Skip to main content

Molecular Basis of BRCA1 and BRCA2: Homologous Recombination Deficiency and Tissue-Specific Carcinogenesis

  • Chapter
  • First Online:
Hereditary Breast and Ovarian Cancer
  • 572 Accesses

Abstract

Mutations in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer (HBOC) syndrome, and these genes play multiple critical roles in maintaining genomic stability. One particularly important function of these genes is the homologous recombination (HR) repair of DNA. HR repair is an essential error-free repair mechanism for DNA double-strand breaks that utilizes an intact sister chromatid as a template. In addition to its role in HBOC oncogenesis, HR dysfunction is a target for treatment with poly (ADP-ribose) polymerase (PARP) inhibitors. Germline mutations of BRCA1/BRCA2 cause breast, ovarian, fallopian tube, and peritoneal cancers with high rates of genomic alterations accompanied by poor prognoses. The mechanism underlying this tissue specificity has not yet clearly been explained, but several studies have examined its possible association with estrogen signaling. In this review, we first introduced the molecular mechanisms of HR mediated by BRCA1 and BRCA2 in the context of PARP inhibitor sensitivity. We also discussed several hypotheses describing estrogen- and HR deficiency-dependent genomic instability. Understanding these mechanisms is crucial for the adequate treatment and prevention of HBOC-related cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  2. Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  3. Lu H-M, Li S, Black MH, et al. Association of Breast and Ovarian Cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 2019;5:51–7.

    Article  PubMed  Google Scholar 

  4. Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3:1190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  6. Farmer H, McCabe H, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  7. Liu B, Parsons R, Papadopoulos N, et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996;2:169–74.

    Article  CAS  PubMed  Google Scholar 

  8. Masutani C, Kusumoto R, Yamada A, et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature. 1999;399:700–4.

    Article  CAS  PubMed  Google Scholar 

  9. Nakane H, Takeuchi S, Yuba S. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group a gene. Nature. 1995;377:165–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hardbower DM, de Sablet T, Chaturvedi R, et al. Chronic inflammation and oxidative stress: the smoking gun for helicobacter pylori-induced gastric cancer? Gut Microbes. 2013;4:475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu LC, Wang ZW, Tsan JT, et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996;14:430–40.

    Article  CAS  PubMed  Google Scholar 

  12. Hashizume R, Fukuda M, Maeda I, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276:14537–40.

    Article  CAS  PubMed  Google Scholar 

  13. Brzovic PS, Keeffe JR, Nishikawa H, et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A. 2003;100:646–5651.

    Article  CAS  Google Scholar 

  14. Zhu Q, Pao GM, Huynh AM, et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature. 2011;477:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalb R, Mallery DL, Larkin C, et al. BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Rep. 2014;8:999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Densham RM, Garvin AJ, Stone HR, et al. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat Struct Mol Biol. 2016;23:647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu X, Wu LC, Bowcock AM, et al. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998;273:25388–92.

    Article  CAS  PubMed  Google Scholar 

  18. Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105:149–60.

    Article  CAS  PubMed  Google Scholar 

  19. Yu X, Chini CCS, He M, et al. The BRCT domain is a Phospho-protein binding domain. Science. 2003;302:639–42.

    Article  CAS  PubMed  Google Scholar 

  20. Manke IA, Lowery DM, Nguyen A, et al. BRCT repeats as Phosphopeptide-binding modules involved in protein targeting. Science. 2003;302:636–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Matsuoka S, Ballif BA, et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 2007;316:1194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sobhian B, Shao G, Lilli DR, et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science. 2007;316:1198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 2007;316:1202–5.

    Article  CAS  PubMed  Google Scholar 

  24. Litman R, Peng M, Jin Z, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005;8:255–65.

    Article  CAS  PubMed  Google Scholar 

  25. Hu Y, Scully R, Sobhian B, et al. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 2011;25:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coleman KA, Greenberg RA. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 2011;286:13669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vohhodina J, Toomire KJ, Petit SA, et al. RAP80 and BRCA1 PARsylation protect chromosome integrity by preventing retention of BRCA1-B/C complexes in DNA repair foci. Proc Natl Acad Sci U S A. 2020;117:2084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang F, Ma J, Wu J, et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009;19:524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sy SMH, Huen MSY, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009;106:7155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang H, Jeffrey P, Miller J, et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297:1837–48.

    Article  CAS  PubMed  Google Scholar 

  31. Sharan SK, Morimatsu M, Albrecht U, et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997;386:804–10.

    Article  CAS  PubMed  Google Scholar 

  32. Wong AKC, Pero R, Ormonde PA, et al. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem. 1997;272:31941–4.

    Article  CAS  PubMed  Google Scholar 

  33. Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. 2002;420:287–93.

    Article  CAS  PubMed  Google Scholar 

  34. Sawyer SL, Tian L, Kähkönen M, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5:135–42.

    Article  CAS  PubMed  Google Scholar 

  35. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297:606–9.

    Article  CAS  PubMed  Google Scholar 

  36. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162–4.

    Article  CAS  PubMed  Google Scholar 

  37. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42:410–4.

    Article  CAS  PubMed  Google Scholar 

  38. Vaz F, Hanenberg H, Schuster B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42:406–9.

    Article  CAS  PubMed  Google Scholar 

  39. Karanam K, Kafri R, Loewer A, et al. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mari PO, Florea BI, Persengiev SP, et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci U S A. 2006;103:18597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006;124:301–13.

    Article  CAS  PubMed  Google Scholar 

  42. Lengsfeld BM, Rattray AJ, Bhaskara V, et al. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell. 2007;28:638–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sartori AA, Lukas C, Coates J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Truong LN, Li Y, Shi LZ, et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A. 2013;110:7720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bunting SF, Callen E, Wong N, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141:243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yun MH, Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature. 2009;459:460–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliver AW, Swift S, Lord CJ. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 2009;10:990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang M, Wu W, Wu W, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34:6170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu Y, Kantake N, Sugiyama T, et al. Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem. 2008;283:14883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Audebert M, Salles B, Calsou P. Involvement of poly(ADP-ribose) Polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem. 2004;279:55117–26.

    Article  CAS  PubMed  Google Scholar 

  52. Cao L, Xu X, Bunting SF, et al. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol Cell. 2009;35:534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bouwman P, Aly A, Escandell JM, et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49:872–83.

    Article  CAS  PubMed  Google Scholar 

  55. Chapman JP, Barral P, Vannier JB, et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell. 2013;49:858–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zimmermann M, Lottersberger F, Buonomo SB, et al. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science. 2013;339:700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu G, Chapman JR, Brandsma I. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Noordermeer SM, Adam S, Setiaputra D, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghezraoui H, Oliveira C, Becker JR, et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature. 2018;560:122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mirman Z, Lottersberger F, Takai H, et al. 53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 2018;560:112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dev H, Chiang TWW, Lescale C, et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20:954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Findlay S, Heath J, Luo VM, et al. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J. 2018:e100158.

    Google Scholar 

  63. Nacson J, Marcantonio DD, Wang Y, et al. BRCA1 mutational complementation induces synthetic viability. Mol Cell. 2020;78:951–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu X, Qiao W, Linke SP, et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet. 2001;28:266–71.

    Article  CAS  PubMed  Google Scholar 

  65. Strom CE, Johansson F, Uhlen M, et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 2011;39:3166–75.

    Article  PubMed  CAS  Google Scholar 

  66. Reynolds P, Cooper S, Lomax M, et al. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res. 2015;43:4028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ame JC, Rolli V, Schreiber V, et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem. 1999;274:17860–8.

    Article  CAS  PubMed  Google Scholar 

  68. Regairaz M, Zhang YW, Fu H, et al. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J Cell Biol. 2011;195:739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pepe A, West SC. MUS81-EME2 promotes replication fork restart. Cell Rep. 2014;7:1048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanada K, Budzowska M, Davies SL, et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol. 2007;14:1096–104.

    Article  CAS  PubMed  Google Scholar 

  71. Murai J, Huang SN, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ray Chaudhuri A, Callen E, Ding X, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535:382–7.

    Article  PubMed  CAS  Google Scholar 

  73. Schlacher K, et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lemacon D, Jackson J, Quinet A, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Thangavel S, Berti M, Levikova M, et al. DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol. 2015;208:545–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iannascoli C, Palermo V, Murfuni I, et al. The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation. Nucleic Acids Res. 2015;43:9788–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Higgs MR, Reynolds JJ, Winczura A, et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol Cell. 2015;59:462–77.

    Article  CAS  PubMed  Google Scholar 

  79. Hatchi E, Skourti-Stathaki K, Ventz S, et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell. 2015;57:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bhatia V, Barroso SI, García-Rubio ML, et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature. 2014;511:362–5.

    Article  CAS  PubMed  Google Scholar 

  81. De Magis A, Manzo SG, Russo M, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci U S A. 2019;116:816–25.

    Article  PubMed  CAS  Google Scholar 

  82. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–13.

    Article  CAS  PubMed  Google Scholar 

  84. Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012;13:770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zimmer J, Tacconi EMC, Folio C, et al. Targeting BRCA1 and BRCA2 deficiencies with G-Quadruplex-interacting compounds. Mol Cell. 2016;61:449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu H, Antonio MD, McKinney S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. King MC, Wieand S, Hale K, et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2. JAMA. 2001;286:2251–6.

    Article  CAS  PubMed  Google Scholar 

  89. Phillipa KA, Milne RL, Rookus MA, et al. Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2013;31:3091–9.

    Article  CAS  Google Scholar 

  90. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing Salpingooophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101:80–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van de Ven M, Liu X, van der Burg E, et al. BRCA1-associated mammary tumorigenesis is dependent on estrogen rather than progesterone signaling. J Pathol. 2018;246:41–53.

    Article  PubMed  CAS  Google Scholar 

  92. Neuhausen SL, Marshall CJ. Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer Res. 1994;54:6069–72.

    CAS  PubMed  Google Scholar 

  93. Collins N, McManus R, Wooster R, et al. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. Oncogene. 1995;10:1673–5.

    CAS  PubMed  Google Scholar 

  94. Gudmundsson J, Johannesdottir G, Bergthorsson JT, et al. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12–q13. Cancer Res. 1995;55:4830–2.

    CAS  PubMed  Google Scholar 

  95. Hakem R, de la Pompa JL, Elia A, et al. Partial rescue of Brca15–6 early embryonic lethality by p53 or p21 null mutation. Nat Genet. 1997;16:298–302.

    Article  CAS  PubMed  Google Scholar 

  96. Ludwig T, Chapman DL, Papaioannou VE, et al. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 1997;11:1226–41.

    Article  CAS  PubMed  Google Scholar 

  97. Ju BG, Lunyak VV, Perissi V, et al. A topoisomerase IIβ–mediated dsDNA break required for regulated transcription. Science. 2006;312:1798–802.

    Article  CAS  PubMed  Google Scholar 

  98. Lin C, Yang L, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139:1069–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sasanuma H, Tsuda M, Morimoto S, et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc Natl Acad Sci U S A. 2018;115:E10642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zweemer RP, van Diest PJ, Verheijen RH, et al. Molecular evidence linking primary cancer of the fallopian tube to BRCA1 germline mutations. Gynecol Oncol. 2000;76:45–50.

    Article  CAS  PubMed  Google Scholar 

  102. Medeiros F, Muto MG, Lee Y, et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol. 2006;30:230–6.

    Article  PubMed  Google Scholar 

  103. Finch A, Shaw P, Rosen B, et al. Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol. 2006;100:58–64.

    Article  CAS  PubMed  Google Scholar 

  104. Reade CR, McVey RM, Tone AA, et al. The fallopian tube as the origin of high grade serous ovarian cancer: review of a paradigm shift. J Obstet Gynaecol Can. 2014;36:133–40.

    Article  PubMed  Google Scholar 

  105. Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24:751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Molyneux G, Geyer FC, Magnay FA, et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7:403–17.

    Article  CAS  PubMed  Google Scholar 

  107. Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.

    Article  CAS  PubMed  Google Scholar 

  108. Asselin-Labat ML, Vaillant F, Sheridan JM, et al. Control of mammary stem cell function by steroid hormone Signalling. Nature. 2010;465:798–802.

    Article  CAS  PubMed  Google Scholar 

  109. Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.

    Article  CAS  PubMed  Google Scholar 

  110. Schramek D, Leibbrandt A, Sigl V, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nolan E, Vaillant F, Branstetter D, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22:933–9.

    Article  CAS  PubMed  Google Scholar 

  112. Elledge SJ, Amon A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell. 2002;1(2):129–32.

    Article  CAS  PubMed  Google Scholar 

  113. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.

    Article  CAS  PubMed  Google Scholar 

  114. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gorrini C, Baniasadi PS, Harris IS, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med. 2013;210:1529–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gorrini C, Ganga BP, Bassi C, et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K–NRF2-regulated pathway. Proc Natl Acad Sci U S A. 2014;111:4472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, T., Wu, W. (2021). Molecular Basis of BRCA1 and BRCA2: Homologous Recombination Deficiency and Tissue-Specific Carcinogenesis. In: Nakamura, S., Aoki, D., Miki, Y. (eds) Hereditary Breast and Ovarian Cancer . Springer, Singapore. https://doi.org/10.1007/978-981-16-4521-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4521-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4520-4

  • Online ISBN: 978-981-16-4521-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics