Skip to main content

PARPi: Efficacy in Hereditary Breast Cancer

  • Chapter
  • First Online:
Hereditary Breast and Ovarian Cancer
  • 477 Accesses

Abstract

Breast cancer (BC) with germline pathogenic variants of BRCA1 or BRCA2 is found in approximately 5% of Japanese BC patients. BRCA1/2-associated BC with homologous recombination (HR) deficiency is potentially sensitive to DNA damage agents, including platinum agents and PARP (poly(ADP-ribose) polymerase) inhibitors. In this chapter, we will summarize the clinical evidence supporting the efficacy of chemotherapy and PARP inhibitors (PARPis), as single agents or in combination, in the (neo)adjuvant setting or in the advanced setting of BRCA1/2-associated BC. Moreover, we will discuss resistance to PARPi and the development of further approaches to improve the therapeutic efficacy of PARPi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Momozawa Y, et al. Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun. 2018;9(1):4083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bordeleau L, Panchal S, Goodwin P. Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat. 2010;119:13–24.

    Article  CAS  PubMed  Google Scholar 

  3. Goodwin PJ, et al. Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an international prospective breast cancer family registry population-based cohort study. J Clin Oncol. 2012;30:19–26.

    Article  PubMed  Google Scholar 

  4. Templeton AJ, et al. Interaction between hormonal receptor status, age and survival in patients with BRCA1/2 germline mutations: a systematic review and meta-regression. PLoS One. 2016;11:e0154789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  6. Rubinstein WS. Hereditary breast cancer: pathobiology, clinical translation, and potential for targeted cancer therapeutics. Familial Cancer. 2008;7:83–9.

    Article  PubMed  Google Scholar 

  7. Keung MYT, Wu Y, Vadgama JV. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med. 2019;8

    Google Scholar 

  8. Fedier A, et al. The effect of loss of BRCA1 on the sensitivity to anticancer agents in p53-deficient cells. Int J Oncol. 2003;22:1169–73.

    CAS  PubMed  Google Scholar 

  9. Sylvain V, Lafarge S, Bignon YJ. Dominant-negative activity of a BRCA1 truncation mutant: effects on proliferation, tumorigenicity in vivo, and chemosensitivity in a mouse ovarian cancer cell line. Int J Oncol. 2002;20:845–53.

    CAS  PubMed  Google Scholar 

  10. Lafarge S, et al. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene. 2001;20:6597–606.

    Article  CAS  PubMed  Google Scholar 

  11. Tassone P, et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer. 2003;88:1285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chabalier C, et al. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle. 2006;5:1001–7.

    Article  CAS  PubMed  Google Scholar 

  13. Arun B, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol. 2011;29:3739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paluch-Shimon S, et al. Neo-adjuvant doxorubicin and cyclophosphamide followed by paclitaxel in triple-negative breast cancer among BRCA1 mutation carriers and non-carriers. Breast Cancer Res Treat. 2016;157:157–65.

    Article  CAS  PubMed  Google Scholar 

  15. Clifton K, et al. Adjuvant versus neoadjuvant chemotherapy in triple-negative breast cancer patients with BRCA mutations. Breast Cancer Res Treat. 2018;170:101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fasching PA, et al. BRCA1/2 mutations and bevacizumab in the neoadjuvant treatment of breast cancer: response and prognosis results in patients with triple-negative breast cancer from the GeparQuinto study. J Clin Oncol. 2018;36:2281–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kriege M, et al. Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:3764–71.

    Article  PubMed  Google Scholar 

  18. Kriege M, et al. The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer. 2012;118:899–907.

    Article  CAS  PubMed  Google Scholar 

  19. Byrski T, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28:375–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hahnen E, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto randomized clinical trial. JAMA Oncol. 2017;3:1378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caramelo O, et al. The effect of neoadjuvant platinum-based chemotherapy in BRCA mutated triple negative breast cancers -systematic review and meta-analysis. Hered Cancer Clin Pract. 2019;17:11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nafisi S, Norouzi Z. A comparative study on the interaction of cis- and trans-platin with DNA and RNA. DNA Cell Biol. 2009;28:469–77.

    Article  CAS  PubMed  Google Scholar 

  23. Lord CJ, Garrett MD, Ashworth A. Targeting the double-strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res. 2006;12:4463–8.

    Article  CAS  PubMed  Google Scholar 

  24. Byrski T, et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2014;147:401–5.

    Article  CAS  PubMed  Google Scholar 

  25. von Minckwitz G, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747–56.

    Article  CAS  Google Scholar 

  26. Pohl-Rescigno E, et al. Association of germline variant status with therapy response in high-risk early-stage breast cancer: a secondary analysis of the GeparOcto randomized clinical trial. JAMA Oncol. 2020;6:744–8.

    Article  PubMed  Google Scholar 

  27. Tung N, et al. TBCRC 031: randomized phase ii study of neoadjuvant cisplatin versus doxorubicin-cyclophosphamide in germline BRCA carriers with HER2-negative breast cancer (the INFORM trial). J Clin Oncol. 2020;38:1539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Byrski T, Dent R, Blecharz P, Foszczynska-Kloda M, Gronwald J, Huzarski T, et al. Results of a phase II open—label, non—randomized trial of cisplatin chemotherapy in patients with BRCA1—positive metastatic breast cancer. Breast Cancer Res Treat. 2012;14:R110.

    Article  CAS  Google Scholar 

  29. Isakoff SJ, et al. TBCRC009: a multicenter phase ii clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33:1902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tutt A, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT trial. Nat Med. 2018;24:628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, et al. Biomarker assessment of the CBCSG006 trial: a randomized phase III trial of cisplatin plus gemcitabine compared with paclitaxel plus gemcitabine as first-line therapy for patients with metastatic triple-negative breast cancer. Ann Oncol. 2018;29:1741–7.

    Article  CAS  PubMed  Google Scholar 

  32. Fasching PA, et al. GeparOLA: a randomized phase II trial to assess the efficacy of paclitaxel and olaparib in comparison to paclitaxel/carboplatin followed by epirubicin/cyclophosphamide as neoadjuvant chemotherapy in patients (pts) with HER2-negative early breast cancer (BC) and homologous recombination deficiency (HRD). J Clin Oncol. 2019;37(Suppl 15):506.

    Article  Google Scholar 

  33. Fong PC, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  34. Tutt A, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44.

    Article  CAS  PubMed  Google Scholar 

  35. Kaufman B, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.

    Article  CAS  PubMed  Google Scholar 

  36. Robson M, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.

    Article  CAS  PubMed  Google Scholar 

  37. Robson ME, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandhu SK, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14:882–92.

    Article  CAS  PubMed  Google Scholar 

  39. Wilson RH, et al. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer. 2017;116:884–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller K, et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer: final efficacy results of Hoosier oncology group BRE09-146. J Clin Oncol. 2015;33(Suppl 15):1082.

    Article  Google Scholar 

  41. Murai J, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014;13:433–43.

    Article  CAS  PubMed  Google Scholar 

  42. Litton JK, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379:753–63.

    Article  CAS  PubMed  Google Scholar 

  43. Poggio F, et al. Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: a systematic review and meta-analysis. ESMO Open. 2018;3:e000361.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Loibl S, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19:497–509.

    Article  CAS  PubMed  Google Scholar 

  45. Han HS, et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study. Ann Oncol. 2018;29:154–61.

    Article  CAS  PubMed  Google Scholar 

  46. Patel M, et al. The role of poly(ADP-ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: a review. Cell Biosci. 2020;10:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Drew Y, et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer. 2016;114:723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Litton JK, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 2020;38:388–94.

    Article  CAS  PubMed  Google Scholar 

  49. Rugo HS, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med. 2016;375:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiao S, et al. PARP inhibitor upregulates pd-l1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nolan E, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9:eaal4922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Domchek S, et al. 1191O - phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol. 2019;30:v477.

    Article  Google Scholar 

  53. Vinayak S, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5:1132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Honrado E, Benítez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol. 2005;18:1305–20.

    Article  CAS  PubMed  Google Scholar 

  55. Matulonis UA, et al. Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann Oncol. 2017;28:512–8.

    Article  CAS  PubMed  Google Scholar 

  56. Jannetti SA, et al. Poly(ADP-ribose)polymerase (PARP) inhibitors and radiation therapy. Front Phamacol. 2020;11

    Google Scholar 

  57. Mehta MP, et al. Veliparib in combination with whole brain radiation therapy in patients with brain metastases: results of a phase 1 study. J Neuro-Oncol. 2015;122:409–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyo Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, A. (2021). PARPi: Efficacy in Hereditary Breast Cancer. In: Nakamura, S., Aoki, D., Miki, Y. (eds) Hereditary Breast and Ovarian Cancer . Springer, Singapore. https://doi.org/10.1007/978-981-16-4521-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4521-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4520-4

  • Online ISBN: 978-981-16-4521-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics