Skip to main content

Germline Findings Through Precision Oncology for Ovarian Cancer

  • Chapter
  • First Online:
Hereditary Breast and Ovarian Cancer

Abstract

Precision oncology has the potential to identify germline pathogenic variants in genes known to be associated with hereditary diseases; these data are called “germline findings.” They could have implications in the assessment and management of future primary cancer risk, family risk assessment and guidance, and personalized treatment determination. Approximately 25% of all ovarian cancers are caused by an inherited genetic condition, and medical societies recommend germline genetic testing for all women diagnosed with ovarian cancer. Tumor genomic profiling and germline findings could allow the use of more personalized diagnostic, predictive, prognostic, and therapeutic strategies for patients with ovarian cancer. Additionally, this information could have clinical implications for the family members of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. https://doi.org/10.1126/science.7545954.

    Article  CAS  PubMed  Google Scholar 

  2. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. https://doi.org/10.1038/378789a0.

    Article  CAS  PubMed  Google Scholar 

  3. Nussbaum RL, McInnes RR, Willard HF. Thompson & Thompson Genetics in medicine. 8th ed. Elsevier Inc; 2016.

    Google Scholar 

  4. Bombard Y, Robson M, Offit K. Revealing the incidentalome when targeting the tumor genome. JAMA. 2013;310(8):795–6. https://doi.org/10.1001/jama.2013.276573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raymond VM, Gray SW, Roychowdhury S, Joffe S, Chinnaiyan AM, Parsons DW, et al. Germline findings in tumor-only sequencing: points to consider for clinicians and laboratories. J Natl Cancer Inst. 2015;108(4):djv351. https://doi.org/10.1093/jnci/djv351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7(283):283ra53. https://doi.org/10.1126/scitranslmed.aaa7161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schrader KA, Cheng DT, Joseph V, Prasad M, Walsh M, Zehir A, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol. 2016;2(1):104–11. https://doi.org/10.1001/jamaoncol.2015.5208.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meric-Bernstam F, Brusco L, Daniels M, Wathoo C, Bailey AM, Strong L, et al. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann Oncol. 2016;27(5):795–800. https://doi.org/10.1093/annonc/mdw018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seifert BA, O'Daniel JM, Amin K, Marchuk DS, Patel NM, Parker JS, et al. Germline analysis from tumor-germline sequencing dyads to identify clinically actionable secondary findings. Clin Cancer Res. 2016;22(16):4087–94. https://doi.org/10.1158/1078-0432.CCR-16-0015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mandelker D, Zhang L, Kemel Y, Stadler ZK, Joseph V, Zehir A, et al. Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA. 2017;318(9):825–35. https://doi.org/10.1001/jama.2017.11137.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, et al. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO precision medicine working group. Ann Oncol. 2019;30(8):1221–31. https://doi.org/10.1093/annonc/mdz136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumbrava EI, Brusco L, Daniels M, Wathoo C, Shaw K, Lu K, et al. Expanded analysis of secondary germline findings from matched tumor/normal sequencing identifies additional clinically significant mutations. JCO Precis Oncol. 2019;3:PO.18.00143. https://doi.org/10.1200/PO.18.00143.

    Article  Google Scholar 

  13. Robson ME, Bradbury AR, Arun B, Domchek SM, Ford JM, Hampel HL, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2015;33(31):3660–7. https://doi.org/10.1200/JCO.2015.63.0996.

    Article  CAS  PubMed  Google Scholar 

  14. Pilie PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16(2):81–104. https://doi.org/10.1038/s41571-018-0114-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379(26):2495–505. https://doi.org/10.1056/NEJMoa1810858.

    Article  CAS  PubMed  Google Scholar 

  16. Ray-Coquard I, Pautier P, Pignata S, Perol D, Gonzalez-Martin A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.

    Article  CAS  PubMed  Google Scholar 

  17. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92. https://doi.org/10.1056/NEJMoa1105535.

    Article  CAS  PubMed  Google Scholar 

  18. Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(9):1274–84. https://doi.org/10.1016/S1470-2045(17)30469-2.

    Article  CAS  PubMed  Google Scholar 

  19. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. https://doi.org/10.1200/JCO.2014.56.2728.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Martin A, Pothuri B, Vergote I, DePont CR, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402. https://doi.org/10.1056/NEJMoa1910962.

    Article  CAS  PubMed  Google Scholar 

  21. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. https://doi.org/10.1056/NEJMoa1611310.

    Article  CAS  PubMed  Google Scholar 

  22. Moore KN, Secord AA, Geller MA, Miller DS, Cloven N, Fleming GF, et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):636–48. https://doi.org/10.1016/S1470-2045(19)30029-4.

    Article  CAS  PubMed  Google Scholar 

  23. Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10106):1949–61. https://doi.org/10.1016/S0140-6736(17)32440-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. https://doi.org/10.1016/S1470-2045(16)30559-9.

    Article  CAS  PubMed  Google Scholar 

  25. Kristeleit R, Shapiro GI, Burris HA, Oza AM, LoRusso P, Patel MR, et al. A phase I-II study of the oral PARP inhibitor rucaparib in patients with germline BRCA1/2-mutated ovarian carcinoma or other solid tumors. Clin Cancer Res. 2017;23(15):4095–106. https://doi.org/10.1158/1078-0432.CCR-16-2796.

    Article  CAS  PubMed  Google Scholar 

  26. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. https://doi.org/10.1056/NEJMoa1706450.

    Article  CAS  PubMed  Google Scholar 

  27. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63. https://doi.org/10.1056/NEJMoa1802905.

    Article  CAS  PubMed  Google Scholar 

  28. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. https://doi.org/10.1056/NEJMoa1903387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382(22):2091–102. https://doi.org/10.1056/NEJMoa1911440.

    Article  PubMed  Google Scholar 

  30. Abida W, Patnaik A, Campbell D, Shapiro J, Bryce AH, McDermott R, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol. 2020:JCO2001035. https://doi.org/10.1200/JCO.20.01035.

  31. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. https://doi.org/10.1200/JCO.19.02105.

    Article  CAS  PubMed  Google Scholar 

  33. Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A, et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028. Gynecol Oncol. 2019;152(2):243–50. https://doi.org/10.1016/j.ygyno.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  34. Le DT, Kim TW, Van Cutsem E, Geva R, Jager D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9. https://doi.org/10.1200/JCO.19.02107.

    Article  CAS  PubMed  Google Scholar 

  35. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. NCCN Clinical Practice Guidelines in Oncology. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic version 1.2021.. https://www.nccn.org/professionals/physician_gls. Accessed 17 Sept 2020.

  37. NCCN Clinical Practice Guidelines in Oncology. Genetic/familial high-risk assessment: colorectal version 1.2020.. https://www.nccn.org/professionals/physician_gls. Accessed 25 Sept 2020.

  38. US Preventive Services Task Force, Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2019;322(7):652–65. https://doi.org/10.1001/jama.2019.10987.

    Article  Google Scholar 

  39. Lu KH, Wood ME, Daniels M, Burke C, Ford J, Kauff ND, et al. American Society of Clinical Oncology expert statement: collection and use of a cancer family history for oncology providers. J Clin Oncol. 2014;32(8):833–40. https://doi.org/10.1200/JCO.2013.50.9257.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Committee on Practice Bulletins—Gynecology, Committee on Genetics, Society of Gynecologic Oncology. Practice bulletin no 182: hereditary breast and ovarian cancer syndrome. Obstet Gynecol. 2017;130(3):e110–26. https://doi.org/10.1097/AOG.0000000000002296.

    Article  Google Scholar 

  41. Randall LM, Pothuri B, Swisher EM, Diaz JP, Buchanan A, Witkop CT, et al. Multi-disciplinary summit on genetics services for women with gynecologic cancers: a Society of Gynecologic Oncology White Paper. Gynecol Oncol. 2017;146(2):217–24. https://doi.org/10.1016/j.ygyno.2017.06.002.

    Article  PubMed  Google Scholar 

  42. Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease dagger. Ann Oncol. 2019;30(5):672–705. https://doi.org/10.1093/annonc/mdz062.

    Article  CAS  PubMed  Google Scholar 

  43. NCCN Clinical Practice Guidelines in Oncology. Ovarian cancer including fallopian tube cancer and primary peritoneal cancer version 1.2020.. https://www.nccn.org/professionals/physician_gls. Accessed 8 Aug 2020.

  44. Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol. 2020;38(11):1222–45. https://doi.org/10.1200/JCO.19.02960.

    Article  PubMed  Google Scholar 

  45. ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med. 2012;14(8):759–61. https://doi.org/10.1038/gim.2012.74.

    Article  Google Scholar 

  46. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565–74. https://doi.org/10.1038/gim.2013.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. https://doi.org/10.1038/gim.2016.190.

    Article  PubMed  Google Scholar 

  48. Li MM, Chao E, Esplin ED, Miller DT, Nathanson KL, Plon SE, et al. Points to consider for reporting of germline variation in patients undergoing tumor testing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(7):1142–8. https://doi.org/10.1038/s41436-020-0783-8.

    Article  CAS  PubMed  Google Scholar 

  49. Pujol P, Vande Perre P, Faivre L, Sanlaville D, Corsini C, Baertschi B, et al. Guidelines for reporting secondary findings of genome sequencing in cancer genes: the SFMPP recommendations. Eur J Hum Genet. 2018;26(12):1732–42. https://doi.org/10.1038/s41431-018-0224-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DeLeonardis K, Hogan L, Cannistra SA, Rangachari D, Tung N. When should tumor genomic profiling prompt consideration of germline testing? J Oncol Pract. 2019;15(9):465–73. https://doi.org/10.1200/JOP.19.00201.

    Article  PubMed  Google Scholar 

  51. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  52. The Catalogue Of Somatic Mutations In Cancer (COSMIC). 2020. https://cancer.sanger.ac.uk/cosmic. Accessed 18 Sept 2020.

  53. cBioPortal. https://www.cbioportal.org/. Accessed 18 Sept 2020.

  54. Clinical Interpretations of Variants in Cancer (CIViC). https://civicdb.org/home. Accessed 18 Sept 2020.

  55. ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/. Accessed 18 Sept 2020.

  56. Sun JX, He Y, Sanford E, Montesion M, Frampton GM, Vignot S, et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Comput Biol. 2018;14(2):e1005965. https://doi.org/10.1371/journal.pcbi.1005965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hereditary Cancer Syndromes and Risk Assessment. ACOG COMMITTEE OPINION, Number 793. Obstet Gynecol. 2019;134(6):e143–9. https://doi.org/10.1097/AOG.0000000000003562.

    Article  Google Scholar 

  58. Enomoto T, Aoki D, Hattori K, Jinushi M, Kigawa J, Takeshima N, et al. The first Japanese nationwide multicenter study of BRCA mutation testing in ovarian cancer: CHARacterizing the cross-sectionaL approach to Ovarian cancer geneTic TEsting of BRCA (CHARLOTTE). Int J Gynecol Cancer. 2019;29(6):1043–9. https://doi.org/10.1136/ijgc-2019-000384.

    Article  PubMed  Google Scholar 

  59. Hirasawa A, Imoto I, Naruto T, Akahane T, Yamagami W, Nomura H, et al. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer. Oncotarget. 2017;8(68):112258–67. https://doi.org/10.18632/oncotarget.22733.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. https://doi.org/10.1158/1078-0432.CCR-13-2287.

    Article  CAS  PubMed  Google Scholar 

  61. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7. https://doi.org/10.1073/pnas.1115052108.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2(4):482–90. https://doi.org/10.1001/jamaoncol.2015.5495.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166.

    Article  CAS  Google Scholar 

  64. Alsop K, Fereday S, Meldrum C. deFazio A, Emmanuel C, George J, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian ovarian cancer study group. J Clin Oncol. 2012;30(21):2654–63. https://doi.org/10.1200/JCO.2011.39.8545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jorge S, McFaddin AS, Doll KM, Pennington KP, Norquist BM, Bennett RL, et al. Simultaneous germline and somatic sequencing in ovarian carcinoma: mutation rate and impact on clinical decision-making. Gynecol Oncol. 2020;156(3):517–22. https://doi.org/10.1016/j.ygyno.2019.12.010.

    Article  CAS  PubMed  Google Scholar 

  66. Norquist BM, Brady MF, Harrell MI, Walsh T, Lee MK, Gulsuner S, et al. Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: an NRG oncology/gynecologic oncology group study. Clin Cancer Res. 2018;24(4):777–83. https://doi.org/10.1158/1078-0432.CCR-17-1327.

    Article  CAS  PubMed  Google Scholar 

  67. Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and meta-analysis of ovarian cancers: estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. Clin Cancer Res. 2008;14(21):6847–54. https://doi.org/10.1158/1078-0432.CCR-08-1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murphy MA, Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: a systematic review. Int J Cancer. 2011;129(8):1914–22. https://doi.org/10.1002/ijc.25835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kelderman S, Schumacher TN, Kvistborg P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell. 2015;28(1):11–3. https://doi.org/10.1016/j.ccell.2015.06.012.

    Article  CAS  PubMed  Google Scholar 

  70. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol. 2020; https://doi.org/10.1016/j.annonc.2020.07.014.

  72. Lu KH. Hereditary gynecologic cancer: risk, prevention and management. CRC Press; 2008.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hirasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okazawa-Sakai, M., Hirasawa, A. (2021). Germline Findings Through Precision Oncology for Ovarian Cancer. In: Nakamura, S., Aoki, D., Miki, Y. (eds) Hereditary Breast and Ovarian Cancer . Springer, Singapore. https://doi.org/10.1007/978-981-16-4521-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4521-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4520-4

  • Online ISBN: 978-981-16-4521-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics