Abstract
Background activity refers to the brain’s electrical activity that is recorded when the subject is in a normal or pathological basic state. Abnormal background activities include reduction or disappearance of normal brain wave activity, changes in the frequency of brain electrical activity (increased slow waves or increased fast waves), changes in rhythm (absence of normal rhythm or abnormal rhythmic activity), changes in amplitude (significant increase or decrease), obvious waveform distortion (e.g., polymorphic slow waves), etc., as well as abnormal spatial and temporal distribution of brain electrical activity. Abnormal background activity is a nonspecific abnormality that is related to the severity of diffuse or local brain dysfunction but lacks the specificity of etiology or pathology. Background activity analysis in ICU patients is different from that of non-ICU patients. It has particularity and complexity, especially in patients with impaired consciousness and ICU patients who cannot record awake patterns. The judgment of their background activities also needs to consider the symmetry, continuity, and reactivity of background activities. This chapter describes in detail the related concepts and interpretation methods of EEG symmetry, continuity, and reactivity in combination with illustrations. At the same time, it introduces its clinical guidance value for the evaluation of brain function and prognosis of critically ill patients, which lays the foundation for EEG analysis of critically ill patients.
Keywords
- ICU
- EEG
- Background activity
- Symmetry
- Continuity
- Reactivity
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hirsch LJ, LaRoche SM, Gaspard N, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):1–27.
Kharoshankaya L, Filan PM, Bogue CO, et al. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke. Dev Med Child Neurol. 2014;56(7):695–8.
Tecchio F, Zappasodi F, Pasqualetti P, et al. Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. NeuroImage. 2005;28(1):72–83.
Lavy S, Melamed E, Portnoy Z. The effect of cerebral infarction on the regional cerebral blood flow of the contralateral hemisphere. Stroke. 1975;6(2):160–3.
Diedler J, Sykora M, Bast T, et al. Quantitative EEG correlates of low cerebral perfusion in severe stroke. Neurocrit Care. 2009;11(2):210–6.
Petty GW, Labar DR, Fisch BJ, et al. Electroencephalography in lacunar infarction. J Neurol Sci. 1995;134(1–2):47–50.
Macdonell RA, Donnan GA, Bladin PF, et al. The electroencephalogram and acute ischemic stroke. Distinguishing cortical from lacunar infarction. Arch Neurol. 1988;45(5):520–4.
COHN R, RAINES GN, Et A. Cerebral vascular lesions; electroencephalographic and neuropathologic correlations. Arch Neurol Psychiatr. 1948;60(2):165–81.
Schneider AL, Jordan KG. Regional attenuation without delta (RAWOD): a distinctive EEG pattern that can aid in the diagnosis and management of severe acute ischemic stroke. Am J Electroneurodiagnostic Technol. 2005;45(2):102–17.
Amrein I, Palvolgyi L, Debreczeni R, et al. Effect of mental arithmetic and verbal fluency on blood flow velocity in the middle cerebral arteries. Ideggyogy Sz. 2004;57(1–2):23–9.
Sinkin MV, Kaimovsky IL, Komoltsev IG, et al. Electroencephalography in acute stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2020;120(8. Vyp. 2):10–6.
Nazish S, Zafar A, Shariff E, et al. Clinical correlates of electroencephalographic patterns in critically ill patients. Clin EEG Neurosci. 2020:1428873148.
Bentes C, Martins H, Peralta AR, et al. Early EEG predicts poststroke epilepsy. Epilepsia Open. 2018;3(2):203–12.
Cobb WA, Guiloff RJ, Cast J. Breach rhythm: the EEG related to skull defects. Electroencephalogr Clin Neurophysiol. 1979;47(3):251–71.
Lee JW, Tanaka N, Shiraishi H, et al. Evaluation of postoperative sharp waveforms through EEG and magnetoencephalography. J Clin Neurophysiol. 2010;27(1):7–11.
Brigo F, Cicero R, Fiaschi A, et al. The breach rhythm. Clin Neurophysiol. 2011;122(11):2116–20.
Kadian R, Vemireddy LP, Kumar A. Breach rhythm. 2020.
Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG variants. Handb Clin Neurol. 2019;160:143–60.
Niedermeyer E. The “third rhythm”: further observations. Clin Electroencephalogr. 1991;22(2):83–96.
Shinomiya S, Fukunaga T, Nagata K. Clinical aspects of the “third rhythm” of the temporal lobe. Clin Electroencephalogr. 1999;30(4):136–42.
van Doorn J, Cherian PJ. Neurological picture. Breach rhythm related to a solitary skull lesion caused by multiple myeloma. J Neurol Neurosurg Psychiatry. 2008;79(7):819.
Krause-Titz UR, Warneke N, Freitag-Wolf S, et al. Factors influencing the outcome (GOS) in reconstructive cranioplasty. Neurosurg Rev. 2016;39(1):133–9.
Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: a review. Mater Sci Eng C Mater Biol Appl. 2016;66:315–22.
Huang J, Peng Y, Yang J, et al. A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models. Accid Anal Prev. 2018;119:91–103.
Mader EJ, Miller D, Toler JM, et al. Focal epileptiform discharges can mimic electrode artifacts when recorded on the scalp near a skull defect. J Investig Med High Impact Case Rep. 2018;6:1559706839.
Lau S, Flemming L, Haueisen J. Corrigendum to “Magnetoencephalography signals are influenced by skull defects” [Clin. Neurophysiol. 125 (2014) 1653–1662]. Clin Neurophysiol. 2017;128(6):1116.
Hunter A, Bordelon Y, Cook I, et al. QEEG measures in Huntington’s disease: a pilot study. PLoS Curr. 2010;2:N1192.
Bonanni L, Franciotti R, Nobili F, et al. EEG markers of dementia with Lewy bodies: a multicenter cohort study. J Alzheimers Dis. 2016;54(4):1649–57.
Franciotti R, Pilotto A, Moretti DV, et al. Anterior EEG slowing in dementia with Lewy bodies: a multicenter European cohort study. Neurobiol Aging. 2020;93:55–60.
Werth E, Achermann P, Borbely AA. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport. 1996;8(1):123–7.
De Gennaro L, Ferrara M, Curcio G, et al. Cortical EEG topography of REM onset: the posterior dominance of middle and high frequencies. Clin Neurophysiol. 2002;113(4):561–70.
Rundgren M, Rosen I, Friberg H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006;32(6):836–42.
Oh SH, Park KN, Kim YM, et al. The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(2):200–5.
Sugiyama K, Kashiura M, Akashi A, et al. Prognostic value of the recovery time of continuous normal voltage in amplitude-integrated electroencephalography in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia: a retrospective study. J Intensive Care. 2016;4:25.
Oh SH, Park KN, Shon YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132(12):1094–103.
Benarous L, Gavaret M, Soda DM, et al. Sources of interrater variability and prognostic value of standardized EEG features in post-anoxic coma after resuscitated cardiac arrest. Clin Neurophysiol Pract. 2019;4:20–6.
Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.
Hawkes MA, Rabinstein AA. Neurological prognostication after cardiac arrest in the era of target temperature management. Curr Neurol Neurosci Rep. 2019;19(2):10.
Guedes B, Manita M, Rita PA, et al. Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon cohort. Clin Neurophysiol Pract. 2020;5:147–51.
Pati S, McClain L, Moura L, et al. Accuracy of limited-montage electroencephalography in monitoring postanoxic comatose patients. Clin EEG Neurosci. 2017;48(6):422–7.
Lamartine MM, Taccone FS, Depondt C, et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2016;24(2):153–62.
Sadaka F, Doerr D, Hindia J, et al. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2015;30(5):292–6.
Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41(7):1264–72.
Sugiyama K, Miyazaki K, Ishida T, et al. Categorization of post-cardiac arrest patients according to the pattern of amplitude-integrated electroencephalography after return of spontaneous circulation. Crit Care. 2018;22(1):226.
Thenayan EA, Savard M, Sharpe MD, et al. Electroencephalogram for prognosis after cardiac arrest. J Crit Care. 2010;25(2):300–4.
Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125(5):947–54.
Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796–802.
Cloostermans MC, van Meulen FB, Eertman CJ, et al. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.
Nolan JP, Soar J, Cariou A, et al. European resuscitation council and european society of intensive care medicine guidelines for post-resuscitation care 2015: Section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015(95):202–22.
Amorim E, Rittenberger JC, Baldwin ME, et al. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.
ter Horst HJ, Brouwer OF, Bos AF. Burst suppression on amplitude-integrated electroencephalogram may be induced by midazolam: a report on three cases. Acta Paediatr. 2004;93(4):559–63.
Rundgren M, Westhall E, Cronberg T, et al. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.
Bouwes A, van Poppelen D, Koelman JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12:63.
Young GB. The EEG in coma. J Clin Neurophysiol. 2000;17(5):473–85.
Rossetti AO, Oddo M, Logroscino G, et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.
Tsetsou S, Novy J, Oddo M, et al. EEG reactivity to pain in comatose patients: importance of the stimulus type. Resuscitation. 2015;97:34–7.
Azabou E, Fischer C, Mauguiere F, et al. Prospective cohort study evaluating the prognostic value of simple EEG parameters in postanoxic coma. Clin EEG Neurosci. 2016;47(1):75–82.
Juan E, Novy J, Suys T, et al. Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2015;22(3):403–8.
Logi F, Pasqualetti P, Tomaiuolo F. Predict recovery of consciousness in post-acute severe brain injury: the role of EEG reactivity. Brain Inj. 2011;25(10):972–9.
Li L, Kang XG, Qi S, et al. Brain response to thermal stimulation predicts outcome of patients with chronic disorders of consciousness. Clin Neurophysiol. 2015;126(8):1539–47.
Kaplan PW, Genoud D, Ho TW, et al. Clinical correlates and prognosis in early spindle coma. Clin Neurophysiol. 2000;111(4):584–90.
Urakami Y. Relationship between, sleep spindles and clinical recovery in patients with traumatic brain injury: a simultaneous EEG and MEG study. Clin EEG Neurosci. 2012;43(1):39–47.
Sutter R, Stevens RD, Kaplan PW. Significance of triphasic waves in patients with acute encephalopathy: a nine-year cohort study. Clin Neurophysiol. 2013;124(10):1952–8.
RamachandranNair R, Sharma R, Weiss SK, et al. A reappraisal of rhythmic coma patterns in children. Can J Neurol Sci. 2005;32(4):518–23.
Ramachandrannair R, Sharma R, Weiss SK, et al. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33(5):345–9.
Douglass LM, Wu JY, Rosman NP, et al. Burst suppression electroencephalogram pattern in the newborn: predicting the outcome. J Child Neurol. 2002;17(6):403–8.
RamachandranNair R, Weiss SK. Incomplete alpha coma pattern in a child. Pediatr Neurol. 2005;33(2):127–30.
Liu G, Su Y, Jiang M, et al. Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis. Neurosci Lett. 2016;626:74–8.
Noirhomme Q, Lehembre R, Lugo ZR, et al. Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest. Clin EEG Neurosci. 2014;45(1):6–13.
Gilmore EJ, Gaspard N, Choi HA, et al. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med. 2015;41(4):686–94.
Westhall E, Rosen I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126(12):2397–404.
Hofmeijer J, Beernink TM, Bosch FH, et al. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.
Tsetsou S, Oddo M, Rossetti AO. Clinical outcome after a reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2013;19(3):283–6.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Wang, X., Yan, Y. (2022). Abnormal EEG Background Activity. In: Wang, X., Li, F., Pan, S. (eds) Multi-Modal EEG Monitoring of Severely Neurologically Ill Patients. Springer, Singapore. https://doi.org/10.1007/978-981-16-4493-1_4
Download citation
DOI: https://doi.org/10.1007/978-981-16-4493-1_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-4492-4
Online ISBN: 978-981-16-4493-1
eBook Packages: MedicineMedicine (R0)