Skip to main content

Ozone Impacts and Climate Forcing: Thailand as a Case Study

  • Chapter
  • First Online:
Greenhouse Gases: Sources, Sinks and Mitigation

Abstract

Ozone (O3) is a secondary pollutant that is not emitted directly from emission sources, but it is formed in the atmosphere through photochemical reaction. O3 in stratosphere is known as “good ozone” because this O3 layer prevents life from ultraviolet (UV) radiation by filter and reducing the intensity of the radiation; on the other hand, tropospheric O3 with high concentrations has adverse effects on human health, plants, and environment. Moreover, tropospheric O3 is the third most important greenhouse gas after carbon dioxide (CO2) and methane (CH4). Tropospheric O3 has positive radiative forcing that leads to global warming; therefore, the increases in tropospheric O3 concentrations enhance the average global temperature. Besides the direct effects of tropospheric O3 on global radiation budget, the changes in its concentration also perturb the mixing ratio of other atmospheric chemical compositions which eventually affect global energy budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pre-industrial time (1850) to present-day (2000) (Naik et al. 2013, pp. 5277–5298).

  2. 2.

    js photon energy in this situation is sunlight with wavelength (λ) less than 420 nm.

References

  • Ainsworth, Elizabeth A., Craig R. Yendrek, Stephen Sitch, William J. Collins, and Lisa D. Emberson. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology 63 (1): 637–661. https://doi.org/10.1146/annurev-arplant-042110-103829.

    Article  CAS  PubMed  Google Scholar 

  • Akritidis, Dimitris, Eleni Katragkou, Prodromos Zanis, Ioannis Pytharoulis, Dimitris Melas, Johannes Flemming, Antje Inness, Hannah Clark, Matthieu Plu, and Henk Eskes. 2018. A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: Analysis and evaluation. Atmospheric Chemistry and Physics 18 (20): 15515–15534. https://doi.org/10.5194/acp-18-15515-2018.

    Article  CAS  Google Scholar 

  • Archibald, A.T., J.L. Neu, Y.F. Elshorbany, O.R. Cooper, P.J. Young, H. Akiyoshi, R.A. Cox, and M. Coyle, R.G. Derwent, M. Deushi, and A. Finco. 2020. Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. Elementa: Science of the Anthropocene, 8 (1).

    Google Scholar 

  • Atkinson, Roger, and Janet Arey. 2003. Atmospheric degradation of volatile organic compounds. Chemical Reviews 103 (12): 4605–4638. https://doi.org/10.1021/cr0206420.

    Article  CAS  PubMed  Google Scholar 

  • Berntsen, T.K., I.S.A. Isaksen, G. Myhre, J.S. Fuglestvedt, F. Stordal, Larsen T. Alsvik, R.S. Freckleton, and K.P. Shine. 1997. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. Journal of Geophysical Research-Atmospheres 102 (23): 28101–28126. https://doi.org/10.1029/97jd02226.

    Article  CAS  Google Scholar 

  • Brasseur, Guy P., Jeffrey T. Kiehl, Jean-Francois Muller, Tim Schneider, Claire Granier, XueXi Tie, and Didier Hauglustaine. 1998. Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophysical Research Letters 25 (20): 3807–3810. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • Campbell, P., Y. Zhang, K. Yahya, K. Wang, C. Hogrefe, G. Pouliot, C. Knote, A. Hodzic, R. San Jose, J.L. Perez, P. Jimenez Guerrero, R. Baro, and P. Makar. 2015. A multi-model assessment for the 2006 and 2010 simulations under the air quality model evaluation international initiative (AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity of O3 and PM2.5 formation regimes. Atmospheric Environment 115: 569–586.

    Article  CAS  Google Scholar 

  • Checa-Garcia, Ramiro, Michaela I. Hegglin, Douglas Kinnison, David A. Plummer, and Keith P. Shine. 2018. Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophysical Research Letters 45 (7): 3264–3273. https://doi.org/10.1002/2017GL076770.

    Article  CAS  Google Scholar 

  • Cionni, I., V. Eyring, J.F. Lamarque, W.J. Randel, D.S. Stevenson, F. Wu, G.E. Bodeker, T.G. Shepherd, D.T. Shindell, and D.W. Waugh. 2011. Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmospheric Chemistry and Physics 11 (21): 11267–11292. https://doi.org/10.5194/acp-11-11267-2011.

    Article  CAS  Google Scholar 

  • Cooper, O.R., D.D. Parrish, J. Ziemke, N.V. Balashov, M. Cupeiro, I.E. Galbally, S. Gilge, et al. 2014. Global distribution and trends of tropospheric ozone: An observation-based. Elementa: Science of the Anthropocene 2 (29): 1–28. https://doi.org/10.12952/journal.elementa.000029.

    Article  CAS  Google Scholar 

  • Derwent, R.G., W.J. Collins, C.E. Johnson, and D.S. Stevenson. 2001. Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects. Climatic Change 49 (4): 463–487. https://doi.org/10.1023/A:1010648913655.

    Article  CAS  Google Scholar 

  • European Commission. 2017. EDGAR emissions of greenhouse gases. Accessed January 27, 2020. https://edgar.jrc.ec.europa.eu/background.php.

  • Felzer, Benjamin S., Timothy Cronin, John M. Reilly, Jerry M. Melillo, and Xiaodong Wang. 2007. Impacts of ozone on trees and crops. Comptes Rendus Geoscience 339 (11–12): 784–798. https://doi.org/10.1016/j.crte.2007.08.008.

    Article  CAS  Google Scholar 

  • Fischer, E.V., D.J. Jacob, R.M. Yantosca, M.P. Sulprizio, D.B. Millet, J. Mao, F. Paulot, et al. 2014. Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmospheric Chemistry and Physics 14 (5): 2679–2698. https://doi.org/10.5194/acp-14-2679-2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuglestvedt, J.S., T. Berntsen, I.S.A. Isaksen, M. Liang, and W.-C. Wang. 1999. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3-D model studies. Atmospheric Environment 33: 961–977.

    Article  CAS  Google Scholar 

  • Gauss, M., G. Myhre, I.S.A. Isaksen, V. Grewe, G. Pitari, O. Wild, W.J. Collins, et al. 2006. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics 6 (3): 575–599. https://doi.org/10.5194/acp-6-575-2006.

    Article  CAS  Google Scholar 

  • Hammer, M.U., B. Vogel, and H. Vogel. 2002. Findings on H2O2/HNO3 as an indicator of ozone sensitivity in Baden-Württemberg, Berlin-Brandenburg, and the Po valley based on numerical simulations. Journal of Geophysical Research – Atmospheres 107: 1–18. https://doi.org/10.1029/2000JD000211.

    Article  CAS  Google Scholar 

  • Hauglustaine, D.A., and G.P. Brasseur. 2001. Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate. Journal of Geophysical Research-Atmospheres 106 (D23): 32337–32360. https://doi.org/10.1029/2001JD900175.

    Article  CAS  Google Scholar 

  • Haywood, J.M., M.D. Schwarzkopf, and V. Ramaswamy. 1998. Estimates of radiative forcing due to modeled increases in tropospheric ozone. Journal of Geophysical Research 103 (98): 16999–17007.

    Article  CAS  Google Scholar 

  • Iglesias-Suarez, Fernando, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young. 2018. Key drivers of ozone change and its radiative forcing over the 21st century. Atmospheric Chemistry and Physics 18 (9): 6121–6139. https://doi.org/10.5194/acp-18-6121-2018.

    Article  CAS  Google Scholar 

  • IPCC. 2001. Climate change 2001: The scientific basis. In Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change, ed. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacob, Daniel J. 1999. Introduction to atmopsheric chemistry. Princeton: Princeton University Press.

    Google Scholar 

  • Kiehl, J.T., T.L. Schneider, R.W. Portmann, and S. Solomon. 1999. Climate forcing due to tropospheric and stratospheric ozone. Journal of Geophysical Research 104: 31239–31254.

    Article  CAS  Google Scholar 

  • Kuang, Shi, M.J. Newchurch, John Burris, Lihua Wang, Kevin Knupp, and Guanyu Huang. 2012. Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. Journal of Geophysical Research-Atmospheres 117 (17): 1–14. https://doi.org/10.1029/2012JD017695.

    Article  CAS  Google Scholar 

  • Lam, K.S., T.J. Wang, C.L. Wu, and Y.S. Li. 2005. Study on an ozone episode in hot season in Hong Kong and transboundary air pollution over Pearl River Delta region of China. Atmospheric Environment 39: 1967–1977. https://doi.org/10.1016/j.atmosenv.2004.11.023.

    Article  CAS  Google Scholar 

  • Langford, A.O., J. Brioude, O.R. Cooper, C.J. Senff, R.J. Alvarez, R.M. Hardesty, B.J. Johnson, and S.J. Oltmans. 2012. Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010. Journal of Geophysical Research-Atmospheres 117 (3): 1–17. https://doi.org/10.1029/2011JD016766.

    Article  CAS  Google Scholar 

  • Lelieveld, Jos, and Frank J. Dentener. 2000. What controls tropospheric ozone? Journal of Geophysical Research-Atmospheres 105 (D3): 3531–3551. https://doi.org/10.1029/1999JD901011.

    Article  CAS  Google Scholar 

  • Liu, X., Y. Zhang, J. Xing, Q. Zhang, K. Wang, D.G. Streets, C. Jang, W. Wang, and J. Hao. 2010. Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmospheric Environment 44: 3719–3727. https://doi.org/10.1016/j.atmosenv.2010.03.036.

    Article  CAS  Google Scholar 

  • Mickley, L.J., P.P. Murti, D.J. Jacob, J.A. Logan, D.M. Koch, and D. Rind. 1999. Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model. Journal of Geophysical Research-Atmospheres 104 (D23): 30153–30172. https://doi.org/10.1029/1999JD900439.

    Article  CAS  Google Scholar 

  • Millard, F., and G. Toupance. 2002. Indicators concept applied to a European City: The Ile de France Area during ESQUIF Campaign. In Air pollution modelling and simulation, ed. B. Sportisse. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-04956-3_7.

    Chapter  Google Scholar 

  • Naik, V., A. Voulgarakis, A.M. Fiore, L.W. Horowitz, J.F. Lamarque, M. Lin, M.J. Prather, et al. 2013. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmospheric Chemistry and Physics 13 (10): 5277–5298. https://doi.org/10.5194/acp-13-5277-2013.

    Article  CAS  Google Scholar 

  • NASA. 2002. Ozone we breath. Accessed January 27, 2020. https://earthobservatory.nasa.gov/features/OzoneWeBreathe/ozone_we_breathe3.php.

  • ———. 2011. The greenhouse effect of tropospheric ozone. Accessed December 5, 2019. https://aura.gsfc.nasa.gov/science/feature-20110403.html.

  • NOAA. 2010. Twenty questions and answers about the ozone layer: 2010 update: What is ozone and where is it in the atmosphere? Accessed November 27, 2019. https://www.esrl.noaa.gov/csd/assessments/ozone/2010/twentyquestions/.

  • ———. 2019. Climate forcing. Accessed November 27, 2020. https://www.climate.gov/maps-data/primer/climate-forcing.

  • NRC. 1991. Rethinking the ozone problem in urban and regional air pollution. Rethinking the ozone problem in urban and regional air pollution. Washington, DC: The National Academies Press.

    Google Scholar 

  • ———. 2005. Radiative forcing of climate change: Expanding the concept and addressing uncertainties. Radiative forcing of climate change. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nuvolone, Daniela, Davide Petri, and Fabio Voller. 2018. The effects of ozone on human health. Environmental Science and Pollution Research 25 (9): 8074–8088. https://doi.org/10.1007/s11356-017-9239-3.

    Article  CAS  PubMed  Google Scholar 

  • Padro, Jacob. 1996. Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmospheric Environment 30 (13): 2363–2369. https://doi.org/10.1016/1352-2310(95)00352-5.

    Article  CAS  Google Scholar 

  • Rap, A., N.A.D. Richards, P.M. Forster, S.A. Monks, S.R. Arnold, and M.P. Chipperfield. 2015. Satellite constraint on the tropospheric ozone radiative effect. Geophysical Research Letters 42: 5074–5081. https://doi.org/10.1002/2015GL064037.

    Article  CAS  Google Scholar 

  • Saxena, P., S. Sonwani, and U.C. Kulshrestha. 2017. Impact of tropospheric ozone and particulate matter on plant health, 19–60 Sustaining future food security. New York: Nova Publisher.

    Google Scholar 

  • Schultz, M.G., S. Schröder, O. Lyapina, O.R. Cooper, I. Galbally, I. Petropavlovskikh, E. Von Schneidemesser, H. Tanimoto, Y. Elshorbany, M. Naja, and R.J. Seguel. 2017. Tropospheric ozone assessment Report: Database and metrics data of global surface ozone observations, 5. Elementa: Science of the Anthropocene.

    Google Scholar 

  • SEI. 2011. Radiative forcing. Accessed December 5, 2019. https://www.co2offsetresearch.org/aviation/RF.html.

  • Seinfeld, John H., and Spyros N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Shindell, D.T., G. Faluvegi, and N. Bell. 2003. Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM. Atmospheric Chemistry and Physics 3 (5): 1675–1702. https://doi.org/10.5194/acp-3-1675-2003.

    Article  CAS  Google Scholar 

  • Shindell, Drew, Greg Faluvegi, Larissa Nazarenko, Kevin Bowman, Jean Francois Lamarque, Apostolos Voulgarakis, Gavin A. Schmidt, Olga Pechony, and Reto Ruedy. 2013. Attribution of historical ozone forcing to anthropogenic emissions. Nature Climate Change 3 (6): 567–570. https://doi.org/10.1038/nclimate1835.

    Article  CAS  Google Scholar 

  • Sillman, S. 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx- hydrocarbon sensitivity in urban locations. Journal of Geophysical Research 100: 14175–14188. https://doi.org/10.1029/94JD02953.

    Article  Google Scholar 

  • Stevenson, D.S., C.E. Johnson, W.J. Collins, R.G. Derwent, K.P. Shine, and J.M. Edwards. 1998. Evolution of tropospheric ozone radiative forcing. Geophysical Research Letters 25 (20): 3819–3822. https://doi.org/10.1029/1998GL900037.

    Article  Google Scholar 

  • Stevenson, D.S., P.J. Young, V. Naik, J.F. Lamarque, D.T. Shindell, A. Voulgarakis, R.B. Skeie, et al. 2013. Tropospheric ozone changes, radiative forcing and attribution to emissions in the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmospheric Chemistry and Physics 13 (6): 3063–3085. https://doi.org/10.5194/acp-13-3063-2013.

    Article  CAS  Google Scholar 

  • Tarasick, D.W., T.K. Carey-Smith, W.K. Hocking, O. Moeini, H. He, J. Liu, M.K. Osman, et al. 2019. Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models. Atmospheric Environment 198: 496–509. https://doi.org/10.1016/j.atmosenv.2018.10.040.

    Article  CAS  PubMed  Google Scholar 

  • Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. Elementa: Science of the Anthropocene, 8(1).

    Google Scholar 

  • Uprety, D.C., and P. Saxena. 2021. Ozone. In Technologies for green house gas assessment in crop studies. Singapore: Springer.

    Google Scholar 

  • US EPA. 2017. Indoor air quality (IAQ) technical overview of volatile organic compounds. Accessed November 25, 2019. https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#2.

  • ———. 2018. Health risk and exposure assessment for ozone final report. Accessed January 27, 2020. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100KBUF.PDF?Dockey=P100KBUF.PDF.

  • US.EPA. 2018. Volatile organic compounds emissions. https://cfpub.epa.gov/roe/indicator.cfm?i=23urce=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiloJzHtL3OAhVLRI8KHVnuCQsQFgg1MAI&url=https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=23&usg=AFQjCNFMo6_TFaF1FCkhFGDUme5Jqz7tqQ.

  • Uttamang, Pornpan, Viney Aneja, and Adel Hanna. 2018. Assessment of gaseous criteria pollutants in the Bangkok Metropolitan. Atmospheric Chemistry and Physics 2009: 12581–12593.

    Article  Google Scholar 

  • WHO. 2000. Effects of ozone on vegetation: Critical levels. Copenhagen: WHO.

    Google Scholar 

  • ———. 2006. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, global update 2005, summary of risk assessment. Geneva: WHO Press.

    Google Scholar 

  • Zhang, B., and N.K. Oanh. 2002. Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O3 precursor concentrations and meteorological conditions. Atmospheric Environment 36: 4211–4222. https://doi.org/10.1016/S13522310(02)00348-5.

    Article  CAS  Google Scholar 

  • Zhang, Y., X.Y. Wen, K. Wang, K. Vijayaraghavan, and M.Z. Jacobson. 2009. Probing into regional O3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study. Journal of Geophysical Research – Atmospheres 114: 1–31. https://doi.org/10.1029/2009JDO11900.

    Article  Google Scholar 

  • Ziemke, Jerry R., Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia. 2019. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, 3257–3269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpan Uttamang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uttamang, P., Aneja, V.P., Battye, W. (2022). Ozone Impacts and Climate Forcing: Thailand as a Case Study. In: Sonwani, S., Saxena, P. (eds) Greenhouse Gases: Sources, Sinks and Mitigation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4482-5_9

Download citation

Publish with us

Policies and ethics