Skip to main content

Air Pollution and Greenhouse Gases Emissions: Implications in Food Production and Food Security

  • Chapter
  • First Online:
Greenhouse Gases: Sources, Sinks and Mitigation

Abstract

Future food production is highly vulnerable to climate change with implications for global food security. This effect is exacerbated by air pollution which further impacts food production negatively. Most of the research on climate change impacts on agriculture focuses on the role of temperature and precipitation. However, anthropogenic climate change is a result of emissions of both long-lived greenhouse gases (GHGs) and short-lived climate pollutants. Tropospheric ozone, methane (GHGs), and black carbon are important short-lived climate pollutants and important GHGs that impact yields of major food crops directly or indirectly through climate. This chapter reviews the relationship between air pollutants, climate change, and food security. Furthermore, the chapter focuses on India where air pollution has become a major concern for health and food production. The review reveals that there is a tremendous decrease in crop productivities all around the world with significant contribution from ozone pollution, especially in India. The wheat crop in the green revolution belt is more impacted by air pollutants than climate change which is a concern for food security at country as well as global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.un.org/sustainabledevelopment/hunger.

  2. 2.

    Agro-ecological zone methodology by International Institute for Applied Systems Analysis.

  3. 3.

    https://unstats.un.org/sdgs/metadata/files/Metadata-02-01-02.pdf.

  4. 4.

    ipcc_wg3_ar5_chapter11.

References

  • Agrawal, Madhoolika. 2005. Effects of air pollution on agriculture: An issue of national concern. National Academy Science Letters 28 (3/4): 93–106.

    CAS  Google Scholar 

  • Agrawal, Madhoolika, B. Singh, M. Rajput, F. Marshall, and J.N.B. Bell. 2003. Effect of air pollution on peri-urban agriculture: A case study. Environmental Pollution 126 (3): 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth, Elizabeth A., Craig R. Yendrek, Stephen Sitch, William J. Collins, and Lisa D. Emberson. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology 63: 637–661.

    Article  CAS  PubMed  Google Scholar 

  • Arneth, Almut, Sandy P. Harrison, Sönke Zaehle, K. Tsigaridis, S. Menon, P.J. Bartlein, J. Feichter, et al. 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3 (8): 525–532.

    Article  CAS  Google Scholar 

  • Ashmore, M.R. 2005. Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment 28 (8): 949–964.

    Article  CAS  Google Scholar 

  • Auffhammer, Maximilian, V. Ramanathan, and Jeffrey R. Vincent. 2006. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proceedings of the National Academy of Sciences 103 (52): 19668–19672.

    Article  CAS  Google Scholar 

  • Auffhammer, Maximilian, Veerabhadran Ramanathan, and Jeffrey R. Vincent. 2012. Climate change, the monsoon, and rice yield in India. Climatic Change 111 (2): 411–424.

    Article  Google Scholar 

  • Avnery, Shiri, Denise L. Mauzerall, Junfeng Liu, and Larry W. Horowitz. 2011a. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment 45 (13): 2284–2296.

    Article  CAS  Google Scholar 

  • ———. 2011b. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment 45 (13): 2297–2309.

    Article  CAS  Google Scholar 

  • Beekmann, Matthias, André SH Prévôt, Frank Drewnick, Jean Sciare, Spyros N. Pandis, Hugo AC Denier Van Der Gon, Monica Crippa et al. "In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity Atmospheric Chemistry and Physics 15, no. 16 (2015): 9577–9591.

    Google Scholar 

  • Bikkina, Srinivas, et al. 2019. Air quality in megacity Delhi affected by countryside biomass burning. Nature Sustainability 2 (3): 200–205.

    Article  Google Scholar 

  • Biswas, D.K., H. Xu, Y.G. Li, J.Z. Sun, X.Z. Wang, X.G. Han, and G.M. Jiang. 2008. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology 14 (1): 46–59.

    Article  Google Scholar 

  • Bollen, Johannes, Bruno Guay, Stéphanie Jamet, and Jan Corfee-Morlot. 2009. Co-benefits of climate change mitigation policies: Literature review and new results. Paris: OECD Pubishing.

    Google Scholar 

  • Booker, Fitzgerald, Russell Muntifering, Margaret McGrath, Kent Burkey, Dennis Decoteau, Edwin Fiscus, William Manning, Sagar Krupa, Arthur Chappelka, and David Grantz. 2009. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology 51 (4): 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Brown, Molly E., and Chris C. Funk. 2008. Food security under climate change.

    Google Scholar 

  • Burney, Jennifer, and V. Ramanathan. 2014. Recent climate and air pollution impacts on Indian agriculture. Proceedings of the National Academy of Sciences 111 (46): 16319–16324.

    Article  CAS  Google Scholar 

  • Campbell, Bruce M., Douglas J. Beare, Elena M. Bennett, Jason M. Hall-Spencer, John S.I. Ingram, Fernando Jaramillo, Rodomiro Ortiz, Navin Ramankutty, Jeffrey A. Sayer, and Drew Shindell. 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society 22 (4).

    Google Scholar 

  • Chen, Chi, Taejin Park, Xuhui Wang, Shilong Piao, Baodong Xu, Rajiv K. Chaturvedi, Richard Fuchs, et al. 2019. China and India lead in greening of the world through land-use management. Nature Sustainability 2 (2): 122–129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, Kyle Frankel, Ashwini Chhatre, Narasimha D. Rao, Deepti Singh, Suparna Ghosh-Jerath, Anvi Mridul, Miguel Poblete-Cazenave, Nabin Pradhan, and Ruth DeFries. 2019. Assessing the sustainability of post-Green Revolution cereals in India. Proceedings of the National Academy of Sciences 116 (50): 25034–25041.

    Article  CAS  Google Scholar 

  • Debaje, S.B. 2014. Estimated crop yield losses due to surface ozone exposure and economic damage in India. Environmental Science and Pollution Research 21 (12): 7329–7338.

    Article  CAS  PubMed  Google Scholar 

  • DeFries, Ruth S., Jonathan A. Foley, and Gregory P. Asner. 2004. Land-use choices: Balancing human needs and ecosystem function. Frontiers in Ecology and the Environment 2 (5): 249–257.

    Article  Google Scholar 

  • DeFries, Ruth, Ashwini Chhatre, Kyle Frankel Davis, Arnab Dutta, Jessica Fanzo, Suparna Ghosh-Jerath, Samuel Myers, Narasimha D. Rao, and Matthew R. Smith. 2018. Impact of historical changes in coarse cereals consumption in India on micronutrient intake and anemia prevalence. Food and Nutrition Bulletin 39 (3): 377–392.

    Article  PubMed  Google Scholar 

  • Erisman, Jan Willem, Mark A. Sutton, James Galloway, Zbigniew Klimont, and Wilfried Winiwarter. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1 (10): 636–639.

    Article  CAS  Google Scholar 

  • FAO, Food. 2016. The state of food and agriculture: Climate change, agriculture and food security. Rome, Italy.

    Google Scholar 

  • FAOSTAT. 2010. Statistical database. Food and agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx?lang=en.

  • Fiore, Arlene M., F.J. Dentener, O. Wild, C. Cuvelier, M.G. Schultz, P. Hess, C. Textor, et al. 2009. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. Journal of Geophysical Research: Atmospheres 114 (D4).

    Google Scholar 

  • Fischer, Günther, Mahendra M. Shah, and H.T. Van Velthuizen. 2002. Climate change and agricultural vulnerability. Vienna: IIASA.

    Google Scholar 

  • Foley, Jonathan A., Ruth DeFries, Gregory P. Asner, Carol Barford, Gordon Bonan, Stephen R. Carpenter, F. Stuart Chapin, et al. 2005. Global consequences of land use. Science, 309 (5734): 570–574.

    Google Scholar 

  • Forster, Piers, Venkatachalam Ramaswamy, Paulo Artaxo, Terje Berntsen, Richard Betts, David W. Fahey, James Haywood, et al. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2." In Climate change 2007. The physical science basis.

    Google Scholar 

  • Gadde, Butchaiah, Sebastien Bonnet, Christoph Menke, and Savitri Garivait. 2009. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution 157 (5): 1554–1558.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, James N. 1998. The global nitrogen cycle: Changes and consequences. Environmental Pollution 102 (1): 15–24.

    Article  CAS  Google Scholar 

  • Ghude, Sachin D., Gabriele G. Pfister, Chinmay Jena, R. J. Van Der A, Louisa K. Emmons, and Rajesh Kumar. 2013. Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRF-Chem simulations. Geophysical Research Letters 40 (2): 423–428.

    Article  CAS  Google Scholar 

  • Gibbs, Holly K., Aaron S. Ruesch, Frédéric Achard, Murray K. Clayton, Peter Holmgren, Navin Ramankutty, and Jonathan A. Foley. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences 107 (38): 16732–16737.

    Article  CAS  Google Scholar 

  • Goel, A., P. Saxena, S. Sonwani, S. Rathi, A. Srivastava, A.K. Bharti, S. Jain, S. Singh, A. Shukla, and A. Srivastava. 2021. Health benefits due to reduction in respirable particulates during COVID-19 lockdown in India. Aerosol and Air Quality Research 21.

    Google Scholar 

  • Graff Zivin, Joshua S., and Matthew J. Neidell. 2012. The impact of pollution on worker productivity. American Economic Review 102 (7): 3652–3673.

    Article  Google Scholar 

  • Gupta, Prabhat K., Shivraj Sahai, Nahar Singh, C.K. Dixit, D.P. Singh, C. Sharma, M.K. Tiwari, Raj K. Gupta, and S.C. Garg. 2004. Residue burning in rice–wheat cropping system: Causes and implications. Current Science 87 (12): 1713–1717.

    CAS  Google Scholar 

  • Hays, Michael D., Philip M. Fine, Christopher D. Geron, Michael J. Kleeman, and Brian K. Gullett. 2005. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmospheric Environment 39 (36): 6747–6764.

    Article  CAS  Google Scholar 

  • Hindu 2019. Fifteen of the 20 most polluted cities in the world are in India, Published in New Delhi: MARCH 05, 2019 22:49 IST. https://www.thehindu.com/sci-tech/energy-and-environment/fifteen-of-the-20-most-polluted-cities-in-the-world-are-in-india/article26440603.ece.

  • International Crops Research Institute for the Semi-Arid Tropics. 2015. Village dynamics in South Asia meso level data for India: 1966–2011.

    Google Scholar 

  • Jacobson, Mark Z., and Mark Z. Jacobson. 2002. Atmospheric pollution: History, science, and regulation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jethva, Hiren T., Duli Chand, Omar Torres, Pawan Gupta, Alexei Lyapustin, and Falguni Patadia. 2018. Agricultural burning and air quality over northern India: A synergistic analysis using NASA’s A-train satellite data and ground measurements. Aerosol and Air Quality Research 18 (7).

    Google Scholar 

  • Kaskaoutis, D.G., S. Kumar, D. Sharma, Ramesh P. Singh, S.K. Kharol, M. Sharma, A.K. Singh, S. Singh, Atinderpal Singh, and D. Singh. 2014. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. Journal of Geophysical Research: Atmospheres 119 (9): 5424–5444.

    Article  Google Scholar 

  • Klingberg, J., Engardt Magnuz, J. Uddling, P.E. Karlsson, and HÃ¥kan Pleijel. 2011. Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A: Dynamic Meteorology and Oceanography 63 (1): 174–187.

    Article  Google Scholar 

  • Kumar, Rajesh, Manish Naja, G.G. Pfister, M.C. Barth, C. Wiedinmyer, and G.P. Brasseur. 2012. Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): Chemistry evaluation and initial results. Geoscientific Model Development 5 (3): 619–648.

    Article  Google Scholar 

  • Kumar, Parmod, Surender Kumar, and Laxmi Joshi. 2015. Socioeconomic and environmental implications of agricultural residue burning: A case study of Punjab, India. New Delhi: Springer.

    Book  Google Scholar 

  • Lal, Shyam, Sethuraman Venkataramani, Manish Naja, Jagdish Chandra Kuniyal, Tuhin Kumar Mandal, Pradip Kumar Bhuyan, Kandikonda Maharaj Kumari, et al. 2017. Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environmental Science and Pollution Research 24 (26): 20972–20981.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Marena, and Peter Huybers. 2012. Reckoning wheat yield trends. Environmental Research Letters 7 (2): 024016.

    Article  Google Scholar 

  • Lobell, David B., and Sharon M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant Physiology 160 (4): 1686–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell, David B., Marshall B. Burke, Claudia Tebaldi, Michael D. Mastrandrea, Walter P. Falcon, and Rosamond L. Naylor. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319 (5863): 607–610.

    Article  CAS  PubMed  Google Scholar 

  • Mauzerall, Denise L., and Xiaoping Wang. 2001. Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia. Annual Review of Energy and the Environment 26 (1): 237–268.

    Article  Google Scholar 

  • Mueller, Nathaniel D., James S. Gerber, Matt Johnston, Deepak K. Ray, Navin Ramankutty, and Jonathan A. Foley. 2012. Closing yield gaps through nutrient and water management. Nature 490 (7419): 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Mukerjee, Polash. 2016. Crop Burning: Punjab and Haryana’s killer fields. Down to Earth 12.

    Google Scholar 

  • Nagajyoti, P.C., K.D. Lee, and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters 8 (3): 199–216.

    Article  CAS  Google Scholar 

  • National family Health Survey Reports. 2015–16. Government of India, http://rchiips.org/nfhs/index.shtml

  • Ojha, Narendra, Manish Naja, K.P. Singh, T. Sarangi, R. Kumar, S. Lal, Mark G. Lawrence, Tim M. Butler, and H.C. Chandola. 2012. Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: Association with the meteorology and regional processes. Journal of Geophysical Research: Atmospheres 117 (D20).

    Google Scholar 

  • Paroda, R. S., M. L. Jat, Madhur Gautam, C. Stirling, and Bhag Mal. 2018. Agricultural policies and investment priorities for managing natural resources, climate change and air pollution: Policy brief.

    Google Scholar 

  • Pugh, T.A.M., Christoph Müller, Joshua Elliott, Delphine Deryng, Christian Folberth, Stefan Olin, Erwin Schmid, and Almut Arneth. 2016. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications 7 (1): 1–8.

    Article  Google Scholar 

  • Rai, Richa, Madhoolika Agrawal, and S.B. Agrawal. 2010. Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmospheric Environment 44 (34): 4272–4282.

    Article  CAS  Google Scholar 

  • Ren, Wei, Hanqin Tian, Bo Tao, Art Chappelka, Ge Sun, Chaoqun Lu, Mingliang Liu, Guangsheng Chen, and Xu. Xiaofeng. 2011. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Global Ecology and Biogeography 20 (3): 391–406.

    Article  Google Scholar 

  • Rita, Van Dingenen, Frank J. Dentener, Frank Raes, Maarten C. Krol, Lisa Emberson, and Janusz Cofala. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment 43 (3): 604–618.

    Article  Google Scholar 

  • Rockström, Johan, Will Steffen, Kevin Noone, Ã…sa Persson, F. Stuart Chapin III, Eric Lambin, Timothy M. Lenton, et al. 2009. Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society 14 (2).

    Google Scholar 

  • Saxena, P., S. Sonwani, and U.C. Kulshrestha. 2017. Impact of tropospheric ozone and particulate matter on plant health, 19–60. Sustaining future food security. New York: Nova Publisher.

    Google Scholar 

  • Saxena, P., S. Sonwani, A. Srivastava, M. Jain, A. Srivastava, A. Bharti, D. Rangra, N. Mongia, S. Tejan, and S. Bhardwaj. 2021. Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 7 (5): e06973.

    Google Scholar 

  • Schmidhuber, Josef, and Francesco N. Tubiello. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences 104 (50): 19703–19708.

    Article  CAS  Google Scholar 

  • Sharma, Amit, Narendra Ojha, Andrea Pozzer, Gufran Beig, and Sachin S. Gunthe. 2019. Revisiting the crop yield loss in India attributable to ozone. Atmospheric Environment: X 1: 100008.

    Article  CAS  Google Scholar 

  • Shindell, Drew, Johan C.I. Kuylenstierna, Elisabetta Vignati, Rita van Dingenen, Markus Amann, Zbigniew Klimont, Susan C. Anenberg, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335 (6065): 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Shindell, D., N. Borgford-Parnell, M. Brauer, A. Haines, J.C.I. Kuylenstierna, S.A. Leonard, V. Ramanathan, A. Ravishankara, M. Amann, and L. Srivastava. 2017. A climate policy pathway for near-and long-term benefits. Science 356 (6337): 493–494.

    Article  CAS  PubMed  Google Scholar 

  • Singh, Ramesh P., and Dimitris G. Kaskaoutis. 2014. Crop residue burning: A threat to South Asian air quality. Eos, Transactions American Geophysical Union 95 (37): 333–334.

    Article  Google Scholar 

  • Sinha, B., K. Singh Sangwan, Y. Maurya, V. Kumar, C. Sarkar, B.P. Chandra, and V. Sinha. 2015. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements. Atmospheric Chemistry and Physics 15 (16): 9555–9576.

    Article  CAS  Google Scholar 

  • Smith, Pete, H. Clark, H. Dong, E.A. Elsiddig, H. Haberl, R. Harper, J. House, et al. 2014. Agriculture, forestry and other land use (AFOLU). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Sonwani, S., and U. Kulshrestha. 2018. Morphology, elemental composition and source identification of airborne particles in Delhi, India. The Journal of Indian Geophysical Union 22 (6): 607–620.

    Google Scholar 

  • Sonwani, S., H. Amreen, and P.S. Khillare. 2016. Polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of NCR, Delhi, India. 41st COSPAR Scientific Assembly 41: A1–A1.

    Google Scholar 

  • Sonwani, S., S. Madaan, J. Arora, D. Rangra, N. Mongia, T. Vats, and P. Saxena. 2021. Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: A review. Frontiers in Sustainable Cities 3: 87.

    Google Scholar 

  • Steffen, Will, Katherine Richardson, Johan Rockström, Sarah E. Cornell, Ingo Fetzer, Elena M. Bennett, Reinette Biggs, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347 (6223).

    Google Scholar 

  • Stehfest, Elke, and Lex Bouwman. 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems 74 (3): 207–228.

    Article  CAS  Google Scholar 

  • Sun, F., D.A.I. Yun, and X. Yu. 2017. Air pollution, food production and food security: A review from the perspective of food system. Journal of Integrative Agriculture 16 (12): 2945–2962.

    Article  Google Scholar 

  • Tai, Amos P.K., and Maria Val Martin. 2017. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security. Atmospheric Environment 169: 11–21.

    Article  CAS  Google Scholar 

  • Tai, Amos P.K., Maria Val Martin, and Colette L. Heald. 2014. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change 4 (9): 817–821.

    Article  CAS  Google Scholar 

  • Tandon, Hari Lal Singh. 2004. Fertilizers in Indian agriculture from 20th to 21st century. New Delhi: Fertiliser Development and Consultation Organisation.

    Google Scholar 

  • The World Bank. 2017. Death in the Air: Air pollution costs money and lives. http://www.worldbank.org/content/dam/infographics/780xany/2016/sep/WB_cost-of-pollution-infographic-ENGLISH_for_web.jpg.

  • Tiwari, Suresh, Atul Kumar Srivastava, Deewan Singh Bisht, Pragya Parmita, Manoj K. Srivastava, and S.D. Attri. 2013. Diurnal and seasonal variations of black carbon and PM2. 5 over New Delhi, India: Influence of meteorology. Atmospheric Research 125: 50–62.

    Article  Google Scholar 

  • Uprety, D.C., and P. Saxena. 2021. Ozone. In Technologies for green house gas assessment in crop studies. Singapore: Springer.

    Google Scholar 

  • Vadrevu, Krishna Prasad, Evan Ellicott, K.V.S. Badarinath, and Eric Vermote. 2011. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environmental Pollution 159 (6): 1560–1569.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Chien. 2007. Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophysical Research Letters 34 (5).

    Google Scholar 

  • Wang, X., and D.L. Mauzerall. 2006. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies. Atmospheric Environment 40 (9): 1706–1721.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, H. (2022). Air Pollution and Greenhouse Gases Emissions: Implications in Food Production and Food Security. In: Sonwani, S., Saxena, P. (eds) Greenhouse Gases: Sources, Sinks and Mitigation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4482-5_6

Download citation

Publish with us

Policies and ethics