Skip to main content

Identification of Major Sinks of Greenhouse Gases

  • Chapter
  • First Online:
Greenhouse Gases: Sources, Sinks and Mitigation

Abstract

Climate change has been an emerging global concern for the past few decades. Since the advent of industrialization, the anthropogenic emissions of Greenhouse gases (GHG), mainly carbon dioxide (CO2), are the biggest contributor to the global temperature rise. According to the Paris Agreement in 2015, the global temperature rise needs to be controlled to at least below 2 °C by 2050–2100. The lifetime of atmospheric CO2 is uncertain as only some of it is absorbed by the land and ocean-based sinks and most of it can remain in the atmosphere for several hundred years. Marked reduction in the increased levels of long-lived GHG, specifically CO2, a major contributor in radiative forcing, is thus being considered of utmost priority in the present time to stabilize the global temperature. To control unprecedented global temperature rise, measures should be adopted to control GHG emission and their removal through sinks. Despite numerous efforts being targeted towards the reduction of carbon emissions, the desired levels of reduction in emissions are not been achieved. Importantly, the deliberate removal of carbon from the atmosphere by various natural and artificial sinks holds the potential to be a promising alternative. Therefore, identification of natural sinks for CO2 and finding ways to enhance their removal potential and developing methods to create artificial sinks for deliberate removal of CO2 are critical research areas. Furthermore, after removal from the atmosphere by various natural and artificially created sinks, subsequent methods are also being developed to store carbon in deep reservoirs for an extended period. This chapter provides a summary of various natural and artificial sinks of CO2 and other GHGs and undergoing research on the development of new approaches for their efficient removal from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, W., H. Struthers, and D.C. Lowe. 2007. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research-Atmospheres 112: D4.

    Article  Google Scholar 

  • Allen, M., M. Babiker, Y. Chen, H. de Coninck, S. Connors, R. van Diemen, and K. Zickfeld. 2018. PCC, 2018: Summary for policymakers. In Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 1–24. Geneva: IPCC.

    Google Scholar 

  • Arneth, Almut, Stephen Sitch, Julia Pongratz, Benjamin D. Stocker, Philippe Ciais, Benjamin Poulter, Anita D. Bayer, Alberte Bondeau, Leonardo Calle, and Louise P. Chini. 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10 (2): 79–84.

    Article  CAS  Google Scholar 

  • Azapagic, A., D. Beerling, C. Cheeseman, G. Henderson, C. Hepburn, J. House, C. Le Quere. 2018a. Greenhouse gas removal. Technical Report. The Royal Society and the Royal Academy of Engineering, 2018. Ch 1, 18–23. https://royalsociety.org/-/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf

  • ———. 2018b. Greenhouse gas removal. Technical report. The Royal Society and the Royal Academy of Engineering, 2018. Ch 3, 69–87. https://royalsociety.org/-/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf

  • Barr, Alan G., T.A. Black, E.H. Hogg, Timothy J. Griffis, K. Morgenstern, Natascha Kljun, A. Theede, and Z. Nesic. 2007. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Global Change Biology 13 (3): 561–576.

    Article  Google Scholar 

  • Beer, Christian, Markus Reichstein, Enrico Tomelleri, Philippe Ciais, Martin Jung, Nuno Carvalhais, Rödenbeck Christian, M. Altaf Arain, Dennis Baldocchi, and Gordon B. Bonan. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329 (5993): 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Beerling, David J., Jonathan R. Leake, Stephen P. Long, Julie D. Scholes, Jurriaan Ton, Paul N. Nelson, Michael Bird, Euripides Kantzas, Lyla L. Taylor, and Binoy Sarkar. 2018. Farming with crops and rocks to address global climate, food and soil security. Nature Plants 4 (3): 138–147.

    Article  PubMed  Google Scholar 

  • Biello, David. 2013. 400 PPM: Can artificial trees help pull CO2 from the air. Scientific American 16: 1.

    Google Scholar 

  • Bonn Challenge. n.d.. Accessed April 18, 2020. http://www.bonnchallenge.org/content/challenge

  • Brunori, Antonio Maria Enrico, Paolo Sdringola, Francesca Dini, Luana Ilarioni, Luigi Nasini, Luca Regni, Primo Proietti, Stefania Proietti, Angelo Vitone, and Francesco Pelleri. 2017. Carbon balance and life cycle assessment in an oak plantation for mined area reclamation. Journal of Cleaner Production 144: 69–78.

    Article  Google Scholar 

  • CCC (Committee on Climate Change) (2019) Net zero- The UK’s contribution to stopping global warming, Ch 1, 38–53. https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf

  • Chi, Jinshu, Mats B. Nilsson, Hjalmar Laudon, Anders Lindroth, Jörgen Wallerman, Johan E.S. Fransson, Natascha Kljun, Tomas Lundmark, Mikaell Ottosson Löfvenius, and Matthias Peichl. 2020. The net landscape carbon balance–integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. Global Change Biology 26: 2353–2367.

    Article  Google Scholar 

  • Ciais, Philippe, et al. 2013. Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker et al., 465–570. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cicerone, Ralph J., and Ronald S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2 (4): 299–327.

    Article  CAS  Google Scholar 

  • Conant, Richard T., Michael G. Ryan, Göran I. Ågren, Hannah E. Birge, Eric A. Davidson, Peter E. Eliasson, Sarah E. Evans, Serita D. Frey, Christian P. Giardina, and Francesca M. Hopkins. 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology 17 (11): 3392–3404.

    Article  Google Scholar 

  • Curry, Charles L. 2007. Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles 21: 4.

    Article  Google Scholar 

  • Denman, Kenneth L., et al. 2007. Couplings between changes in the climate system and biogeochemistry. In Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. S. Solomon et al., 499–587. Cambridge: Cambridge University Press.

    Google Scholar 

  • Environment and Energy Study Institute. 2020. Timeline of major UN climate negotiations. A brief overview of COP decisions. https://www.eesi.org/policy/international

  • Fatichi, Simone, Christoforos Pappas, Jakob Zscheischler, and Sebastian Leuzinger. 2019. Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist 221 (2): 652–668.

    Article  CAS  Google Scholar 

  • Feng, Ellias Y., David P. Keller, Wolfgang Koeve, and Andreas Oschlies. 2016. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environmental Research Letters 11 (7): 074008.

    Article  Google Scholar 

  • Nájera Fernández, Cindy, Basilio Zafrilla Requena, María-José Bonete, and Rosa María Martínez-Espinosa. 2012. Role of the denitrifying Haloarchaea in the treatment of nitrite-brines.

    Google Scholar 

  • Fuss, Sabine, William F. Lamb, Max W. Callaghan, Jérôme Hilaire, Felix Creutzig, Thorben Amann, Tim Beringer, Wagner de Oliveira Garcia, Jens Hartmann, and Tarun Khanna. 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13 (6): 063002.

    Article  Google Scholar 

  • Gauthier, Sylvie, Bernier Patrick, T. Kuuluvainen, A.Z. Shvidenko, and D.G. Schepaschenko. 2015. Boreal forest health and global change. Science 349 (6250): 819–822.

    Article  CAS  PubMed  Google Scholar 

  • Hadden, David, and Achim Grelle. 2017. Net CO2 emissions from a primary boreo-nemoral forest over a 10 year period. Forest Ecology and Management 398: 164–173.

    Article  Google Scholar 

  • Hammond, Jim, Simon Shackley, Saran Sohi, and Peter Brownsort. 2011. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 39 (5): 2646–2655.

    Article  CAS  Google Scholar 

  • Hastie, Adam, Ronny Lauerwald, Gesa Weyhenmeyer, Sebastian Sobek, Charles Verpoorter, and Pierre Regnier. 2018. CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Global Change Biology 24 (2): 711–728.

    Article  PubMed  Google Scholar 

  • He, Zhanfei, Jiaqi Wang, Jiajie Hu, Hanqing Yu, Mike S.M. Jetten, Huan Liu, Chaoyang Cai, Yan Liu, Hongxing Ren, and Xu Zhang. 2019. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. Environmental Pollution 244: 228–237.

    Article  CAS  PubMed  Google Scholar 

  • Holloway, Sam. 2008. Sequestration—the underground storage of carbon dioxide. In Climate change and energy pathways for the Mediterranean, 61–88. Berlin: Springer.

    Chapter  Google Scholar 

  • International Energy Agency (IEA). 2020. Global CO2 emissions in 2019. IEA Paris, February 11, 2020. https://www.iea.org/articles/global-co2-emissions-in-2019

  • International Energy Agency (IEA) Technology Roadmap - Carbon Capture and Storage 2013. n.d.. https://webstore.iea.org/technology-roadmap-carbon-capture-and-storage-2013

  • Jeen, Sung-Wook, Snezana Lazar, Lai Gui, and Robert W. Gillham. 2014. Degradation of chlorofluorocarbons using granular iron and bimetallic irons. Journal of Contaminant Hydrology 158: 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, Simon, Diego Abalos, Marija Prodana, Ana Catarina Bastos, Jan Willem Van Groenigen, Bruce A. Hungate, and Frank Verheijen. 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters 12 (5): 053001.

    Article  Google Scholar 

  • Lal, Rattan. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36: S33–S39.

    Article  Google Scholar 

  • Lampitt, Richard S., Eric P. Achterberg, Thomas R. Anderson, J.A. Hughes, M.D. Iglesias-Rodriguez, Boris A. Kelly-Gerreyn, Mike Lucas, E.E. Popova, Richard Sanders, and J.G. Shepherd. 2008. Ocean fertilization: A potential means of geoengineering? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366 (1882): 3919–3945.

    Article  CAS  Google Scholar 

  • Le Quéré, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J.I. Korsbakken, G.P. Peters, J.G. Canadell, R.B. Jackson, and T.A. Boden. 2017. Global carbon budget 2017. Earth System Science Data Discussions 2017: 21–79.

    Google Scholar 

  • Lehmann, Johannes, and Stephen Joseph. 2015. Biochar for environmental management: Science, technology and implementation. London: Routledge.

    Book  Google Scholar 

  • Lim, Hyungwoo, Ram Oren, Sari Palmroth, Pantana Tor-ngern, Tommy Mörling, Torgny Näsholm, Tomas Lundmark, Heljä-Sisko Helmisaari, Jaana Leppälammi-Kujansuu, and Sune Linder. 2015. Inter-annual variability of precipitation constrains the production response of boreal Pinus sylvestris to nitrogen fertilization. Forest Ecology and Management 348: 31–45.

    Article  Google Scholar 

  • Liu, Yi, and Minghui Guo. 2017. Environmental load analysis of forestation and management process of Larix olgensis plantation by life cycle analysis. Journal of Cleaner Production 142: 2463–2470.

    Article  Google Scholar 

  • Lledó, B., R.M. Martınez-Espinosa, F.C. Marhuenda-Egea, and M.J. Bonete. 2004. Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: Biochemical and genetic analysis. Biochimica et Biophysica Acta (BBA) 1674 (1): 50–59.

    Article  Google Scholar 

  • Lohila, Annalea, Kari Minkkinen, Mika Aurela, J-P Tuovinen, Timo Penttilä, and T Laurila. 2011. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink.

    Google Scholar 

  • Lycus, Pawel, Kari Lovise Bøthun, Linda Bergaust, James Peele Shapleigh, Lars Reier Bakken, and Åsa Frostegård. 2017. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. The ISME Journal 11 (10): 2219–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machacova, Katerina, Jaana Bäck, Anni Vanhatalo, Elisa Halmeenmäki, Pasi Kolari, Ivan Mammarella, Jukka Pumpanen, Manuel Acosta, Otmar Urban, and Mari Pihlatie. 2016. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports 6: 23410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, Erin T., Caitlyn M. McGuire, Mohammad S. Mubarak, and Dennis G. Peters. 2016. Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews 116 (24): 15198–15234.

    Article  CAS  PubMed  Google Scholar 

  • McGlashan, N.R., M.H.W. Workman, B. Caldecott, and N. Shah. 2012. Negative emissions technologies. Grantham Institute for Climate Change Briefing Paper 8: 1.

    Google Scholar 

  • Menon, Surabi, Kenneth L. Denman, Guy Brasseur, Amnat Chidthaisong, Philippe Ciais, Peter M. Cox, Robert E. Dickinson, Didier Hauglustaine, Christoph Heinze, and Elisabeth Holland. 2007. Couplings between changes in the climate system and biogeochemistry. Berkeley: Lawrence Berkeley National Lab.

    Google Scholar 

  • Meyer, Leo, Sander Brinkman, Line van Kesteren, Noëmie Leprince-Ringuet, and Fijke van Boxmeer. 2014. IPCC, 2014: Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, 1–151. Geneva: IPCC.

    Google Scholar 

  • Minasny, Budiman, Brendan P. Malone, Alex B. McBratney, Denis A. Angers, Dominique Arrouays, Adam Chambers, Vincent Chaplot, Zueng-Sang Chen, Kun Cheng, and Bhabani S. Das. 2017. Soil carbon 4 per mille. Geoderma 292: 59–86.

    Article  Google Scholar 

  • Myhre, Gunnar, Drew Shindell, and Julia Pongratz. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 659–740. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ni, Xiangyin, and Peter M. Groffman. 2018. Declines in methane uptake in forest soils. Proceedings of the National Academy of Sciences 115 (34): 8587–8590.

    Article  CAS  Google Scholar 

  • NOAA. 2020. Annual greenhouse gas index. https://www.esrl.noaa.gov/gmd/aggi/aggi.html. Accessed June 30 2020

  • Oquist, M.G., Kevin Bishop, Achim Grelle, Leif Klemedtsson, S.J. Kohler, Hjalmar Laudon, M. Anders Lindroth, Ottosson Löfvenius, Marcus B. Wallin, and Mats B. Nilsson. 2014. The full annual carbon balance of boreal forests is highly sensitive to precipitation. Environmental Science & Technology Letters 1 (7): 315–319.

    Article  Google Scholar 

  • Qu, Zhi, Lars R. Bakken, Lars Molstad, Åsa Frostegård, and Linda L. Bergaust. 2016. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environmental Microbiology 18 (9): 2951–2963.

    Article  CAS  PubMed  Google Scholar 

  • Ramage, Michael H., Henry Burridge, Marta Busse-Wicher, George Fereday, Thomas Reynolds, Darshil U. Shah, Guanglu Wu, Li Yu, Patrick Fleming, and Danielle Densley-Tingley. 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68: 333–359.

    Article  Google Scholar 

  • Rebecca, Thomas, Graven Heather, Hoskins Brian, and Prentice C. Iain. 2016. What is meant by ‘balancing sources and sinks of greenhouse gases’ to limit global temperature rise. Briefing Note 3: 1–5.

    Google Scholar 

  • Renforth, Phil, and Gideon Henderson. 2017. Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics 55 (3): 636–674.

    Article  Google Scholar 

  • Richardson, David J., and Nicholas J. Watmough. 1999. Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology 3 (2): 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Roco, Constance A., Linda L. Bergaust, Lars R. Bakken, Joseph B. Yavitt, and James P. Shapleigh. 2017. Modularity of nitrogen-oxide reducing soil bacteria: Linking phenotype to genotype. Environmental Microbiology 19 (6): 2507–2519.

    Article  CAS  PubMed  Google Scholar 

  • Roy, Poritosh, and Goretty Dias. 2017. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews 77: 59–69.

    Article  CAS  Google Scholar 

  • Saxena, P., S. Sonwani, and U.C. Kulshrestha. 2017. Impact of tropospheric ozone and particulate matter on plant health, 19–60 Sustaining future food security. New York: Nova Publisher.

    Google Scholar 

  • Saxena, P., S. Sonwani, A. Srivastava, M. Jain, A. Srivastava, A. Bharti, D. Rangra, N. Mongia, S. Tejan, and S. Bhardwaj. 2021. Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 7 (5): e06973.

    Google Scholar 

  • Smith, Pete, and Julio Friedmann. 2017. Bridging the gap: Carbon dioxide removal-the emissions gap report 2017 Chapter 7. The emissions gap report 2017: A UN environment synthesis report.

    Google Scholar 

  • Smith, Pete, Steven J. Davis, Felix Creutzig, Sabine Fuss, Jan Minx, Benoit Gabrielle, Etsushi Kato, Robert B. Jackson, Annette Cowie, and Elmar Kriegler. 2016. Biophysical and economic limits to negative CO2 emissions. Nature Climate Change 6 (1): 42–50.

    Article  CAS  Google Scholar 

  • Sonwani, S., and V. Maurya. 2018. Impact of air pollution on the environment and economy. In Air pollution: Sources, impacts and controls, 113. Oxford: CABI.

    Google Scholar 

  • Sun, Zhigao, Lingling Wang, Hanqin Tian, Huanhuan Jiang, Xiaojie Mou, and Wanlong Sun. 2013. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China. Chemosphere 90 (2): 856–865.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Lishan, Zhenming Ge, Xuhui Zhou, Shihua Li, Xiuzhen Li, and Jianwu Tang. 2020. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Global Change Biology 26 (3): 1638–1653.

    Article  PubMed  Google Scholar 

  • Taylor, L.L., J.R. Leake, J. Quirk, K. Hardy, S.A. Banwart, and D.J. Beerling. 2009. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7 (2): 171–191.

    Article  CAS  PubMed  Google Scholar 

  • The Environmental Literacy Council. 2020. Ocean fertilization. https://enviroliteracy.org/air-climate-weather/climate/ocean-fertilization/. Accessed March 23 2020

  • Timperley, Jocelyn. 2019. The carbon brief profile: India. Carbon brief. https://www.carbonbrief.org/the-carbon-brief-profile-india

  • Torregrosa-Crespo, Javier, Rosa María Martínez-Espinosa, J. Esclapez, Vanesa Bautista, Carmen Pire, Mónica Camacho, David J. Richardson, and María José Bonete. 2016. Anaerobic metabolism in Haloferax genus: Denitrification as case of study. In Advances in microbial physiology. New York: Academic.

    Google Scholar 

  • Torregrosa-Crespo, Javier, Linda Bergaust, Carmen Pire, and Rosa María Martínez-Espinosa. 2018. Denitrifying haloarchaea: Sources and sinks of nitrogenous gases. FEMS Microbiology Letters 365 (3): 270.

    Article  Google Scholar 

  • Uchimiya, Minori, Isabel M. Lima, K. Thomas Klasson, SeChin Chang, Lynda H. Wartelle, and James E. Rodgers. 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58 (9): 5538–5544.

    Article  CAS  PubMed  Google Scholar 

  • UN Climate Talks. 2020. 1992–2020. https://www.cfr.org/timeline/un-climate-talks. Accessed April 19 2020.

  • UNCC. 2020. The Paris agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. Accessed April 15 2020.

  • Uprety, D.C., and P. Saxena. 2021a. Carbon dioxide. In Technologies for green house gas assessment in crop studies. Singapore: Springer.

    Google Scholar 

  • ———. 2021b. Methane. In Technologies for green house gas assessment in crop studies. Singapore: Springer.

    Google Scholar 

  • Walter, Jennifer.2019. “As CFC emissions rise, the ozone hole could stick around longer” discover. https://www.discovermagazine.com/planet-earth/antarcticas-ozone-hole-is-shrinking-at-a-slower-rate. Accessed on April 20 2020.

  • Weng, Zhe Han, Lukas Van Zwieten, Bhupinder Pal Singh, Ehsan Tavakkoli, Stephen Joseph, Lynne M. Macdonald, Terry J. Rose, Michael T. Rose, Stephen W.L. Kimber, and Stephen Morris. 2017. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change 7 (5): 371–376.

    Article  CAS  Google Scholar 

  • Zedler, Joy B., and Suzanne Kercher. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30: 39–74.

    Article  Google Scholar 

  • Zhang, Afeng, Liqiang Cui, Gengxing Pan, Lianqing Li, Qaiser Hussain, Xuhui Zhang, Jinwei Zheng, and David Crowley. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139 (4): 469–475.

    Article  CAS  Google Scholar 

  • Zhuang, Qianlai, Jerry M. Melillo, David W. Kicklighter, Ronald G. Prinn, A. David McGuire, Paul A. Steudler, Benjamin S. Felzer, and Shaomin Hu. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles 18 (3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, M., Saini, S.K. (2022). Identification of Major Sinks of Greenhouse Gases. In: Sonwani, S., Saxena, P. (eds) Greenhouse Gases: Sources, Sinks and Mitigation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4482-5_3

Download citation

Publish with us

Policies and ethics