Skip to main content

Negative Partial Density of States

  • Chapter
  • First Online:
Mesoscopic Route to Time Travel
  • 219 Accesses

Abstract

We first give an introduction to Burgers circuit (BC). We then show that phase of the wavefunction in different model systems can be understood in general using BC. This includes the new discontinuous phase discussed in Chap. 2. Then the three prong potential is introduced and it is shown that the discontinuous phase has continuous counterparts that lead to the dramatic effect that PDOS can become negative. Such continuous counterparts were not known in case of classical waves. FSR-like rules can also be understood in terms of BC. General proofs are provided that make our results independent of the models used for demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.V. Berry, J. Mod. Opt. 45, 1845–1858 (1998)

    Google Scholar 

  2. M. Büttiker, Time in Quantum Mechanics (Springer, 2001) pp. 279–303

    Google Scholar 

  3. R. Englman, A. Yahalom, Phys. Rev. B 61, 2716 (2000)

    Google Scholar 

  4. A.M. Jayannavar, Phys. Rev. B 49, 14718 (1994)

    Google Scholar 

  5. K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. B 68, 235–304 (2003)

    Google Scholar 

  6. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035–319 (2004)

    Google Scholar 

  7. R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217–228 (1994)

    Google Scholar 

  8. J.F. Nye, M.V. Berry, Proc. Roy. Soc. Lond. A 336, 165–190 (1974)

    Google Scholar 

  9. U. Satpathy, P. Singha Deo, Ann. Phys. 375, 491 (2016)

    Google Scholar 

  10. R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, H. Shtrikman, Nature (London) 385, 417–420 (1997)

    Google Scholar 

  11. P. Singha Deo, Int. J. Mod. Phys. B 19, 899 (2005)

    Google Scholar 

  12. P. Singha Deo, Pramana J. Phys. 58, 195–203 (2002)

    Google Scholar 

  13. P. Singha Deo, Solid State Commun. 107, 69 (1998)

    Google Scholar 

  14. A.L. Yeyati, M. Büttiker, Phys. Rev. B 62, 7307 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Singha Deo .

Appendices

Appendix A

From Eq. (5.8), we can write

$$\begin{aligned} \rho _{pd}(3,1)= & {} -\frac{1}{2\pi }\int _{sample} d\mathbf{r} ^{3} |t_{31}|^2\frac{\delta \theta _{t_{31}}}{\delta V(\mathbf{r} )} \end{aligned}$$
(5.34)

In Eq. (5.34), using the well-known semi-classical approximation \( \int _{sample} d\mathbf{r} ^{3}\frac{\delta t_{31}}{\delta V(\mathbf{r} )}\cong - \frac{dt_{31}}{dE} \), we get (see Eq. 5.13)

$$\begin{aligned} \rho _{pd}(3,1)\approx & {} \frac{1}{2\pi }|t_{31}|^2\frac{d\theta _{t_{31}}}{dE} \end{aligned}$$
(5.35)

Now, for a contour \( C' \) traced when energy is varied from 0 to \( E_{1} \),

(5.36)

Appendix B

We know that in a scattering problem increasing incident energy by dE is equivalent to decreasing the potential globally by a constant amount \( \Delta \varepsilon \), such that \( dE=-e\Delta \varepsilon \), where e is particle charge that we will set to 1 to simplify our arguments. That is, the new potential is \( V'(\mathbf{r} )=V(\mathbf{r} )-\Delta \varepsilon \). Hence, if we can generate a closed subloop in the A-D by varying E, then we can also do so by globally changing the potential and for such a closed contour like ABQFA in Fig. 5.7c,

$$\begin{aligned} \oint _{ABQFA} \delta \theta _{s_{\alpha \beta }}=0 \nonumber \\ \text {i.e.,}-\oint _{ABQFA}\int _{global}\frac{\delta \theta _{s_{\alpha \beta }}}{\delta V(\mathbf{r} )}\Delta \varepsilon d\mathbf{r} ^3=0 \end{aligned}$$
(5.37)

Now we replace the global integration over \( \mathbf{r} \) by an integration over the sample or the scattering region only, since we have seen that it can be done in case of closed contours or inside an integration of the type \(\oint _{C}\) in Eq. (5.37). This has been discussed in Eq. (5.23).

$$\begin{aligned} \therefore -\oint _{C}\int _{sample}\frac{\vert s_{\alpha \beta }\vert ^{2}}{\vert s_{\alpha \beta }\vert ^{2}}\frac{\delta \theta _{s_{\alpha \beta }}}{\delta V(\mathbf{r} )}\Delta \varepsilon d\mathbf{r} ^3= & {} 0\nonumber \\ \text {or,}-\oint _{C}\frac{1}{\vert s_{\alpha \beta }\vert ^{2}}\Delta \varepsilon \int _{sample}\vert s_{\alpha \beta }\vert ^{2}\frac{\delta \theta _{s_{\alpha \beta }}}{\delta V(\mathbf{r} )}d\mathbf{r} ^3= & {} 0\nonumber \\ \text {or,}2\pi \oint _{C}\frac{\rho _{pd}(\alpha ,\beta )}{\vert s_{\alpha \beta }\vert ^{2}}\Delta \varepsilon= & {} 0\nonumber~\text {Using Eq. (5.8)} \end{aligned}$$

Therefore, the R.H.S of Eq. (5.25) is justified if an electronic charge is multiplied to the numerator.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singha Deo, P. (2021). Negative Partial Density of States. In: Mesoscopic Route to Time Travel. Springer, Singapore. https://doi.org/10.1007/978-981-16-4465-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4465-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4464-1

  • Online ISBN: 978-981-16-4465-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics