Skip to main content

Radar Vegetation Indices for Crop Growth Monitoring

  • Chapter
  • First Online:
Radar Remote Sensing for Crop Biophysical Parameter Estimation

Abstract

Vegetation indices (VI) are often used as a proxy to plant growth indicators. SAR data are usually processed by several downstream users and are often interpreted by non-radar specialists. This paradigm requires the utility of radar-derived vegetation indices prototypical for Analysis Ready Data (ARD) products. This chapter covers the methodologies for the novel radar vegetation indices, viz., GRVI (Generalized Radar Vegetation Index), CpRVI (Compact-pol Radar Vegetation Index), and Dual-pol Radar Vegetation Index (DpRVI), for the full, compact, and dual-pol SAR data, respectively. Detailed investigations are accompanied by temporal analysis of vegetation indices using in-situ measurements of crop biophysical parameters. Vegetation indices have also indicated an opportunity to estimate biophysical parameters with fitted models directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During the simulation of 2 \(\times \) 2 covariance matrix \(\mathbf {C_2}\) from \(\mathbf {C_3}\), the ellipticity of transmitted wave \(\chi = {45}^{\circ }\) and right hand circular condition is considered (Kumar et al. 2017).

References

  • Agriculture MB (2016) Agriculture|Province of Manitoba. http://www.gov.mb.ca/agriculture/crops/seasonal-reports/crop-report-archive/index.html

  • Antropov O, Rauste Y, Hame T (2011) Volume scattering modeling in PolSAR decompositions: study of ALOS PALSAR data over boreal forest. IEEE Trans Geosci Remote Sens 49(10):3838–3848

    Article  Google Scholar 

  • Blaes X, Defourny P, Wegmuller U, Della Vecchia A, Guerriero L, Ferrazzoli P (2006) C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model. IEEE Trans Geosci Remote Sens 44(4):791–800

    Article  Google Scholar 

  • Borgeaud M, Shin R, Kong J (1987) Theoretical models for polarimetric radar clutter. J Electromagn Waves Appl 1(1):73–89

    Article  Google Scholar 

  • Bouvet A, Le Toan T, Lam-Dao N (2009) Monitoring of the rice cropping system in the Mekong Delta using ENVISAT/ASAR dual polarization data. IEEE Trans Geosci Remote Sens 47(2):517–526

    Article  Google Scholar 

  • Brown SC, Quegan S, Morrison K, Bennett JC, Cookmartin G (2003) High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans Geosci Remote Sens 41(7):1602–1610

    Article  Google Scholar 

  • Cable J, Kovacs J, Jiao X, Shang J (2014) Agricultural monitoring in northeastern Ontario, Canada, using multi-temporal polarimetric RADARSAT-2 data. Remote Sens 6(3):2343–2371

    Article  Google Scholar 

  • Caicedo JPR, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G (2014) Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1249–1259

    Article  Google Scholar 

  • Canisius F, Shang J, Liu J, Huang X, Ma B, Jiao X, Geng X, Kovacs JM, Walters D (2018) Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sens Environ 210:508–518

    Article  Google Scholar 

  • Chang JG, Shoshany M, Oh Y (2018) Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems. IEEE Trans Geosci Remote Sens 56(12):7102–7108

    Article  Google Scholar 

  • Charbonneau F, Brisco B, Raney R, McNairn H, Liu C, Vachon P, Shang J, DeAbreu R, Champagne C, Merzouki A et al (2010) Compact polarimetry overview and applications assessment. Can J Remote Sens 36(sup2):S298–S315

    Article  Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35(1):68–78

    Article  Google Scholar 

  • El Hajj M, Baghdadi N, Bazzi H, Zribi M (2019) Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens 11(1):31

    Article  Google Scholar 

  • Geldsetzer T, Charbonneau F, Arkett M, Zagon T (2015) Ocean wind study using simulated RCM compact-polarimetry SAR. Can J Remote Sens 41(5):418–430

    Article  Google Scholar 

  • Gururaj P, Umesh P, Shetty A (2019) Assessment of spatial variation of soil moisture during maize growth cycle using SAR observations. In: Remote sensing for agriculture, ecosystems, and hydrology XXI, international society for optics and photonics, vol 11149, p 1114916

    Google Scholar 

  • Hajnsek I, Jagdhuber T, Schon H, Papathanassiou KP (2009) Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans Geosci Remote Sens 47(2):442–454

    Article  Google Scholar 

  • Homayouni S, McNairn H, Hosseini M, Jiao X, Powers J (2019) Quad and compact multitemporal C-band PolSAR observations for crop characterization and monitoring. Int J Appl Earth Obs Geoinf 74:78–87

    Article  Google Scholar 

  • Huang Y, Walker JP, Gao Y, Wu X, Monerris A (2016) Estimation of vegetation water content from the radar vegetation index at L-Band. IEEE Trans Geosci Remote Sens 54(2):981–989

    Article  Google Scholar 

  • Jagdhuber T (2012) Soil parameter retrieval under vegetation cover using SAR polarimetry. PhD thesis, University of Potsdam

    Google Scholar 

  • Jia M, Tong L, Zhang Y, Chen Y (2013) Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization. Radio Sci 48(5):471–481

    Article  Google Scholar 

  • Jiao X, McNairn H, Shang J, Pattey E, Liu J, Champagne C (2011) The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can J Remote Sens 37(1):69–81

    Article  Google Scholar 

  • Kim Y, van Zyl JJ (2009) A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans Geosci Remote Sens 47(8):2519–2527

    Article  Google Scholar 

  • Kim Y, Jackson T, Bindlish R, Lee H, Hong S (2012) Radar vegetation index for estimating the vegetation water content of rice and Soybean. IEEE Geosci Remote Sens Lett 9(4):564–568

    Article  Google Scholar 

  • Kim Y, Jackson T, Bindlish R, Hong S, Jung G, Lee K (2014) Retrieval of wheat growth parameters with radar vegetation indices. IEEE Geosci Remote Sens Lett 11(4):808–812

    Article  Google Scholar 

  • Kross A, McNairn H, Lapen D, Sunohara M, Champagne C (2015) Assessment of rapideye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int J Appl Earth Obs Geoinf 34:235–248

    Article  Google Scholar 

  • Kumar V, Rao Y (2015) Temporal analysis of different crops using quad-pol RADARSAT-2 data. In: IEEE international geoscience and remote sensing symposium. IEEE, pp 3211–3214

    Google Scholar 

  • Kumar V, McNairn H, Bhattacharya A, Rao YS (2017) Temporal response of scattering from crops for transmitted ellipticity variation in simulated compact-pol SAR data. IEEE J Sel Top Appl Earth Obs Remote Sens 10(12):5163–5174

    Article  Google Scholar 

  • Li K, Brisco B, Yun S, Touzi R (2012) Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Can J Remote Sens 38(2):169–179

    Article  Google Scholar 

  • Liu C, Shang J, Vachon PW, McNairn H (2012) Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans Geosci Remote Sens 51(4):2227–2240

    Article  Google Scholar 

  • Lopez-Sanchez JM, Vicente-Guijalba F, Ballester-Berman JD, Cloude SR (2014) Polarimetric response of rice fields at C-band: analysis and phenology retrieval. IEEE Trans Geosci Remote Sens 52(5):2977–2993

    Article  Google Scholar 

  • Mandal D, Kumar V, Rao Y, Bhattacharya A, Ramana K (2019a) Experimental field campaigns at Vijayawada test site. Technical Report, MRS2019TR02, Microwave Remote Sensing Lab, India. http://doi.org/10.17605/OSF.IO/DN3E8

  • Mandal D, Vaka DS, Bhogapurapu NR, Vanama V, Kumar V, Rao YS, Bhattacharya A (2019b) Sentinel-1 SLC preprocessing workflow for polarimetric applications: a generic practice for generating dual-pol covariance matrix elements in SNAP S-1 toolbox. Preprints p 2019110393. https://doi.org/10.20944/preprints201911.0393.v1

  • Mandal D, Kumar V, Ratha D, Dey S, Bhattacharya A, Lopez-Sanchez JM, McNairn H, Rao YS (2020a) Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens Environ 247:111954

    Google Scholar 

  • Mandal D, Kumar V, Ratha D, Lopez-Sanchez JM, Bhattacharya A, McNairn H, Rao Y, Ramana K (2020b) Assessment of rice growth conditions in a semi-arid region of India using the generalized radar vegetation index derived from radarsat-2 polarimetric SAR data. Remote Sens Environ 237:111561

    Google Scholar 

  • Mandal D, Ratha D, Bhattacharya A, Kumar V, McNairn H, Rao YS, Frery AC (2020c) A radar vegetation index for crop monitoring using compact polarimetric SAR data. IEEE Trans Geosci Remote Sens 58(9):6321–6335

    Article  Google Scholar 

  • McNairn H, Shang J (2016) A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In: Multitemporal remote sensing. Springer, pp 317–340

    Google Scholar 

  • McNairn H, Tom J J, Powers J, Bélair S, Berg A, Bullock P, Colliander A, Cosh MH, Kim SB, Ramata M, Pacheco A, Merzouki A (2016) Experimental plan SMAP validation experiment 2016 in Manitoba, Canada (SMAPVEX16-MB). https://smap.jpl.nasa.gov/internal_resources/390/

  • McNairn H, Homayouni S, Hosseini M, Powers J, Beckett K, Parkinson W (2017) Compact polarimetric synthetic aperture radar for monitoring crop condition. In: IEEE international geoscience and remote sensing symposium. IEEE, pp 4358–4361

    Google Scholar 

  • McNairn H, Jiao X, Pacheco A, Sinha A, Tan W, Li Y (2018) Estimating canola phenology using synthetic aperture radar. Remote Sens Environ 219:196–205

    Article  Google Scholar 

  • Meier U (1997) Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag

    Google Scholar 

  • Nasirzadehdizaji R, Balik Sanli F, Abdikan S, Cakir Z, Sekertekin A, Ustuner M (2019) Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage. Appl Sci 9(4):655

    Google Scholar 

  • Oh Y (2004) Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans Geosci Remote Sens 42(3):596–601

    Article  Google Scholar 

  • Pacheco A, McNairn H, Li Y, Lampropoulos G, Powers J (2016) Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology. In: Remote sensing for agriculture, ecosystems, and hydrology XVIII, international society for optics and photonics, vol 9998, p 999802

    Google Scholar 

  • Periasamy S (2018) Significance of dual polarimetric synthetic aperture radar in biomass retrieval: an attempt on Sentinel-1. Remote Sens Environ 217:537–549

    Article  Google Scholar 

  • Raney RK (2007) Hybrid-polarity SAR architecture. IEEE Trans Geosci Remote Sens 45(11):3397–3404

    Article  Google Scholar 

  • Ratha D, Bhattacharya A, Frery AC (2018) Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance. IEEE Geosci Remote Sens Lett 15(1):151–155

    Article  Google Scholar 

  • Ratha D, Mandal D, Kumar V, McNairn H, Bhattacharya A, Frery AC (2019) A generalized volume scattering model-based vegetation index from polarimetric SAR data. IEEE Geosci Remote Sens Lett 16(11):1791–1795

    Article  Google Scholar 

  • Shirvany R, Chabert M, Tourneret JY (2012) Estimation of the degree of polarization for hybrid/compact and linear dual-pol SAR intensity images: principles and applications. IEEE Trans Geosci Remote Sens 51(1):539–551

    Article  Google Scholar 

  • Skriver H, Svendsen MT, Thomsen AG (1999) Multitemporal C-and L-band polarimetric signatures of crops. IEEE Trans Geosci Remote Sens 37(5):2413–2429

    Article  Google Scholar 

  • Steele-Dunne SC, McNairn H, Monsivais-Huertero A, Judge J, Liu PW, Papathanassiou K (2017) Radar remote sensing of agricultural canopies: a review. IEEE J Sel Top Appl Earth Obs Remote Sens 10(5):2249–2273

    Article  Google Scholar 

  • Thompson AA (2015) Overview of the RADARSAT constellation mission. Can J Remote Sens 41(5):401–407

    Article  Google Scholar 

  • Touzi R, Hurley J, Vachon PW (2015) Optimization of the degree of polarization for enhanced ship detection using polarimetric RADARSAT-2. IEEE Trans Geosci Remote Sens 53(10):5403–5424

    Article  Google Scholar 

  • Touzi R, Omari K, Sleep B, Jiao X (2018) Scattered and received wave polarization optimization for enhanced peatland classification and fire damage assessment using polarimetric PALSAR. IEEE J Sel Top Appl Earth Obs Remote Sens 11(11):4452–4477

    Article  Google Scholar 

  • Trudel M, Charbonneau F, Leconte R (2012) Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can J Remote Sens 38(4):514–527

    Google Scholar 

  • Veloso A, Mermoz S, Bouvet A, Le Toan T, Planells M, Dejoux JF, Ceschia E (2017) Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens Environ 199:415–426

    Article  Google Scholar 

  • Vreugdenhil M, Wagner W, Bauer-Marschallinger B, Pfeil I, Teubner I, Rüdiger C, Strauss P (2018) Sensitivity of Sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens 10(9):1396

    Article  Google Scholar 

  • Wang H, Magagi R, Goita K (2016) Polarimetric decomposition for monitoring crop growth status. IEEE Geosci Remote Sens Lett 13(6):870–874

    Article  Google Scholar 

  • Wiseman G, McNairn H, Homayouni S, Shang J (2014) RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE J Sel Top Appl Earth Obs Remote Sens 7(11):4461–4471

    Article  Google Scholar 

  • Wu Lk, Moore RK, Zoughi R (1985) Sources of scattering from vegetation canopies at 10 GHz. IEEE Trans Geosci Remote Sens GE-23(5):737–745

    Google Scholar 

  • Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2004) Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens 43(8):1699–1706

    Article  Google Scholar 

  • van Zyl JJ, Kim Y (2011) Synthetic aperture radar polarimetry, vol 2. Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, D., Bhattacharya, A., Rao, Y.S. (2021). Radar Vegetation Indices for Crop Growth Monitoring. In: Radar Remote Sensing for Crop Biophysical Parameter Estimation. Springer Remote Sensing/Photogrammetry. Springer, Singapore. https://doi.org/10.1007/978-981-16-4424-5_7

Download citation

Publish with us

Policies and ethics