Skip to main content

Abstract

This chapter briefly discusses Synthetic Aperture Radar (SAR) imaging principles and the theory of SAR polarimetry. The descriptions of several polarimetric parameters and their expressions are presented in this chapter. SAR imaging principles are introduced, followed by the description of wave and polarimetric scattering concepts. Several polarimetric target decomposition techniques for different polarimetric modes are presented in detail. A section is devoted to a brief description of useful SAR missions, particularly for agriculture applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth T, Kelly J, Lee JS (2009) Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery. ISPRS J Photogramm Remote Sens 64(5):464–471

    Article  Google Scholar 

  • Antropov O, Rauste Y, Hame T (2011) Volume scattering modeling in PolSAR decompositions: study of ALOS PALSAR data over boreal forest. IEEE Trans Geosci Remote Sens 49(10):3838–3848

    Article  Google Scholar 

  • Arii M, Van Zyl JJ, Kim Y (2010) Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans Geosci Remote Sens 49(3):1104–1113

    Article  Google Scholar 

  • Barakat R (1977) Degree of polarization and the principal idempotents of the coherency matrix. Optics Commun 23(2):147–150

    Article  MathSciNet  Google Scholar 

  • Bargiel D (2017) A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens Environ 198:369–383

    Article  Google Scholar 

  • Bebbington D (1998) The expression of reciprocity in polarimetric algebras. In: International workshop on radar polarimetry, pp 9–18

    Google Scholar 

  • Bhattacharya A, De S, Muhuri A, Surendar M, Venkataraman G, Das A (2015a) A new compact polarimetric SAR decomposition technique. Remote Sens Lett 6(12):914–923

    Article  Google Scholar 

  • Bhattacharya A, Muhuri A, De S, Manickam S, Frery AC (2015b) Modifying the Yamaguchi four-component decomposition scattering powers using a stochastic distance. IEEE J Sel Top Appl Earth Obs Remote Sens 8(7):3497–3506

    Article  Google Scholar 

  • Bhattacharya A, Singh G, Manickam S, Yamaguchi Y (2015c) An adaptive general four-component scattering power decomposition with unitary transformation of coherency matrix (AG4U). IEEE Geosci Remote Sens Lett 12(10):2110–2114

    Google Scholar 

  • Boerner WM, Yan WL, Xi AQ, Yamaguchi Y (1991) On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen’s polarization fork concept, and its extension to the partially polarized case. Proc IEEE 79(10):1538–1550

    Article  Google Scholar 

  • Boerner WM, Yan WL, Xi AQ, Yamaguchi Y (1992) Basic concepts of radar polarimetry. In: Direct and inverse methods in radar polarimetry. Springer, pp 155–245

    Google Scholar 

  • Bouvet A, Le Toan T (2011) Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens Environ 115(4):1090–1101

    Article  Google Scholar 

  • Bouvet A, Le Toan T, Lam-Dao N (2009) Monitoring of the rice cropping system in the Mekong Delta using ENVISAT/ASAR dual polarization data. IEEE Trans Geosci Remote Sens 47(2):517–526

    Article  Google Scholar 

  • Brisco B, Mahdianpari M, Mohammadimanesh F (2020) Hybrid compact polarimetric SAR for environmental monitoring with the RADARSAT constellation mission. Remote Sens 12(20):3283

    Google Scholar 

  • Cameron WL, Leung LK (1990) Feature motivated polarization scattering matrix decomposition. In: IEEE international conference on radar. IEEE, pp 549–557

    Google Scholar 

  • Campbell BA (2012) High circular polarization ratios in radar scattering from geologic targets. J Geophys Res 117(E6)

    Google Scholar 

  • Canisius F, Shang J, Liu J, Huang X, Ma B, Jiao X, Geng X, Kovacs JM, Walters D (2018) Tracking crop phenological development using multi-temporal polarimetric RADARSAT-2 data. Remote Sens Environ 210:508–518

    Article  Google Scholar 

  • Charbonneau F, Brisco B, Raney R, McNairn H, Liu C, Vachon P, Shang J, DeAbreu R, Champagne C, Merzouki A et al (2010) Compact polarimetry overview and applications assessment. Can J Remote Sens 36(sup2):S298–S315

    Article  Google Scholar 

  • Cloude S (2007) The dual polarisation entropy/alpha decomposition. In: Proceedings of the 3rd international workshop on science and applications of SAR polarimetry and polarimetric interferometry, Noordwijk, The Netherlands, pp 22–26

    Google Scholar 

  • Cloude SR (1992) Uniqueness of target decomposition theorems in radar polarimetry. In: Direct and inverse methods in radar polarimetry. Springer, pp 267–296

    Google Scholar 

  • Cloude SR (2009) Polarisation: applications in remote sensing. Oxford University Press

    Google Scholar 

  • Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34(2):498–518

    Article  Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35(1):68–78

    Article  Google Scholar 

  • Cloude SR, Goodenough DG, Chen H (2012) Compact decomposition theory. IEEE Geosci Remote Sens Lett 9(1):28–32

    Article  Google Scholar 

  • Cohen MH (1958) Radio astronomy polarization measurements. Proc IRE 46(1):172–183

    Article  Google Scholar 

  • Cui Y, Yamaguchi Y, Yang J, Kobayashi H, Park SE, Singh G (2013) On complete model-based decomposition of polarimetric SAR coherency matrix data. IEEE Trans Geosci Remote Sens 52(4):1991–2001

    Article  Google Scholar 

  • Cumming IG, Wong FH (2005) Digital processing of synthetic aperture radar data. Artech House 1(3)

    Google Scholar 

  • Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing, vol 11. Wiley, New York

    Google Scholar 

  • Dey S, Bhattacharya A, Ratha D, Mandal D, Frery AC (2020) Target characterization and scattering power decomposition for full and compact polarimetric SAR data. IEEE Trans Geosci Remote Sens 59(5):3981–3998

    Article  Google Scholar 

  • Dey S, Bhattacharya A, Frery AC, López-Martínez C, Rao YS (2021a) A model-free four component scattering power decomposition for polarimetric SAR data. IEEE J Sel Top Appl Earth Obs Remote Sens 14:3887–3902

    Google Scholar 

  • Dey S, Bhogapurapu N, Bhattacharya A, Mandal D, Lopez-Sanchez JM, McNairn H, Frery AC (2021b) Rice phenology mapping using novel target characterization parameters from polarimetric SAR data. Int J Remote Sens 42(14):5519–5543

    Article  Google Scholar 

  • Dhingra S, Bhattacharya A (2015) A modified m-\(\chi \) decomposition for compact polarimetric SAR data. In: Lunar and planetary science conference, vol 1832, p 1837

    Google Scholar 

  • Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36(3):963–973

    Article  Google Scholar 

  • Guissard A (1994) Mueller and Kennaugh matrices in radar polarimetry. IEEE Trans Geosci Remote Sens 32(3):590–597

    Article  Google Scholar 

  • Holah N, Baghdadi N, Zribi M, Bruand A, King C (2005) Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens Environ 96(1):78–86

    Article  Google Scholar 

  • Jagdhuber T, Hajnsek I, Caputo M, Papathanassiou KP (2014) Dual-polarimetry for soil moisture inversion at X-band. In: EUSAR 2014; 10th European conference on synthetic aperture radar, VDE, pp 1–4

    Google Scholar 

  • Ji K, Wu Y (2015) Scattering mechanism extraction by a modified Cloude-Pottier decomposition for dual polarization SAR. Remote Sens 7(6):7447–7470

    Article  Google Scholar 

  • Jiao X, Kovacs JM, Shang J, McNairn H, Walters D, Ma B, Geng X (2014) Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J Photogramm Remote Sens 96:38–46

    Article  Google Scholar 

  • Khabbazan S, Vermunt P, Steele-Dunne S, Ratering Arntz L, Marinetti C, van der Valk D, Iannini L, Molijn R, Westerdijk K, van der Sande C (2019) Crop monitoring using Sentinel-1 data: a case study from The Netherlands. Remote Sens 11(16):1887

    Google Scholar 

  • Krogager E (1990) New decomposition of the radar target scattering matrix. Electron Lett 26(18):1525–1527

    Article  Google Scholar 

  • Kropatsch WG, Strobl D (1990) The generation of SAR layover and shadow maps from digital elevation models. IEEE Trans Geosci Remote Sens 28(1):98–107

    Article  Google Scholar 

  • Kumar V, Mandal D, Bhattacharya A, Rao Y (2020) Crop characterization using an improved scattering power decomposition technique for compact polarimetric SAR data. Int J Appl Earth Obs Geoinf 88:102052

    Google Scholar 

  • Lee JS (1981) Speckle analysis and smoothing of synthetic aperture radar images. Comput Graphics Image Process 17(1):24–32

    Article  Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press

    Google Scholar 

  • Lee JS, Grunes MR, Pottier E (2001) Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Trans Geosci Remote Sens 39(11):2343–2351

    Article  Google Scholar 

  • Liu C, Shang J, Vachon PW, McNairn H (2012) Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans Geosci Remote Sens 51(4):2227–2240

    Article  Google Scholar 

  • Loew A, Ludwig R, Mauser W (2006) Derivation of surface soil moisture from ENVISAT ASAR wide Swath and image mode data in agricultural areas. IEEE Trans Geosci Remote Sens 44(4):889–899

    Article  Google Scholar 

  • Lopes A, Touzi R, Nezry E (1990) Adaptive speckle filters and scene heterogeneity. IEEE Trans Geosci Remote Sens 28(6):992–1000

    Article  Google Scholar 

  • Lopez-Sanchez JM, Ballester-Berman JD, Hajnsek I (2011) First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J Sel Top Appl Earth Obs Remote Sens 4(2):412–422

    Article  Google Scholar 

  • Lopez-Sanchez JM, Cloude SR, Ballester-Berman JD (2012) Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans Geosci Remote Sens 50(7):2695–2709

    Article  Google Scholar 

  • Mahdianpari M, Mohammadimanesh F, McNairn H, Davidson A, Rezaee M, Salehi B, Homayouni S (2019) Mid-season crop classification using dual-, compact-, and full-polarization in preparation for the Radarsat Constellation Mission (RCM). Remote Sens 11(13):1582

    Google Scholar 

  • Massonnet D, Souyris JC (2008) Imaging with synthetic aperture radar. CRC Press

    Google Scholar 

  • Misra T, Rana S, Desai N, Dave D, Rajeevjyoti, Arora R, Rao C, Bakori B, Neelakantan R, Vachchani J (2013) Synthetic aperture radar payload on-board RISAT-1: configuration, technology and performance. Current Sci 446–461

    Google Scholar 

  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1(1):6–43

    Article  Google Scholar 

  • Paek SW, Balasubramanian S, Kim S, de Weck O (2020) Small-satellite synthetic aperture radar for continuous global biospheric monitoring: a review. Remote Sens 12(16):2546

    Google Scholar 

  • Paladini R, Ferro Famil L, Pottier E, Martorella M, Berizzi F, Dalle Mese E (2012) Lossless and sufficient \(\psi \)-invariant decomposition of random reciprocal target. IEEE Trans Geosci Remote Sens 50(9):3487–3501

    Article  Google Scholar 

  • Raney R (2016) Comparing compact and quadrature polarimetric SAR performance. IEEE Geosci Remote Sens Lett 13(6):861–864

    Article  Google Scholar 

  • Raney RK (2007) Hybrid-polarity SAR architecture. IEEE Trans Geosci Remote Sens 45(11):3397–3404

    Article  Google Scholar 

  • Raney RK (2019) Hybrid dual-polarization synthetic aperture radar. Remote Sens 11(13):1521

    Google Scholar 

  • Raney RK, Cahill JT, Patterson GW, Bussey DBJ (2012) The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J Geophys Res 117(E12)

    Google Scholar 

  • Ratha D, Pottier E, Bhattacharya A, Frery AC (2020) A polsar scattering power factorization framework and novel roll-invariant parameter-based unsupervised classification scheme using a geodesic distance. IEEE Trans Geosci Remote Sens 58(5):3509–3525. https://doi.org/10.1109/TGRS.2019.2957514

    Article  Google Scholar 

  • Richards JA et al (2009) Remote sensing with imaging radar, vol 1. Springer

    Google Scholar 

  • Sato A, Yamaguchi Y, Singh G, Park SE (2011) Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci Remote Sens Lett 9(2):166–170

    Article  Google Scholar 

  • Schmitt A, Wendleder A, Hinz S (2015) The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J Photogramm Remote Sens 102:122–139

    Article  Google Scholar 

  • Singh G, Yamaguchi Y (2018) Model-based six-component scattering matrix power decomposition. IEEE Trans Geosci Remote Sens 56(10):5687–5704

    Article  Google Scholar 

  • Singh G, Yamaguchi Y, Park SE (2012) General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans Geosci Remote Sens 51(5):3014–3022

    Article  Google Scholar 

  • Slade B (2018) RADARSAT-2 product description. RN-SP-52-1238 1(1/14). https://mdacorporation.com/docs/default-source/technical-documents/geospatial-services/52-1238_rs2_product_description.pdf?sfvrsn=10

  • Small D, Rohner C, Miranda N, Rüetschi M, Schaepman ME (2021) Wide-area analysis-ready radar backscatter composites. IEEE Trans Geosci Remote Sens 1–14. https://doi.org/10.1109/TGRS.2021.3055562

  • Souyris JC, Imbo P, Fjortoft R, Mingot S, Lee JS (2005) Compact polarimetry based on symmetry properties of geophysical media: the/spl pi//4 mode. IEEE Trans Geosci Remote Sens 43(3):634–646

    Article  Google Scholar 

  • Stacy N, Campbell D (1993) Stokes vector analysis of lunar radar backscatter. In: IEEE international geoscience and remote sensing symposium. IEEE, pp 30–32

    Google Scholar 

  • Stacy N, Preiss M (2006) Compact polarimetric analysis of X-band SAR data. In: Proceedings of the EUSAR, vol 6

    Google Scholar 

  • Stokes GG (1851) On the composition and resolution of streams of polarized light from different sources. Trans Camb Philos Soc 9:399

    Google Scholar 

  • Touzi R (2007) Target scattering decomposition in terms of roll-invariant target parameters. IEEE Trans Geosci Remote Sens 45(1):73–84

    Article  MathSciNet  Google Scholar 

  • Ullmann T, Schmitt A, Jagdhuber T (2016) Two component decomposition of dual polarimetric HH/VV SAR data: case study for the tundra environment of the Mackenzie Delta region, Canada. Remote Sens 8(12):1027

    Google Scholar 

  • Ullmann T, Banks SN, Schmitt A, Jagdhuber T (2017) Scattering characteristics of X-, C-and L-band PolSAR data examined for the tundra environment of the Tuktoyaktuk Peninsula, Canada. Appl Sci 7(6):595

    Google Scholar 

  • Van Zyl JJ, Arii M, Kim Y (2011) Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans Geosci Remote Sens 49(9):3452–3459

    Article  Google Scholar 

  • Voormansik K, Jagdhuber T, Olesk A, Hajnsek I, Papathanassiou KP (2013) Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-X data. Int J Remote Sens 34(22):8081–8103

    Article  Google Scholar 

  • Vreugdenhil M, Wagner W, Bauer-Marschallinger B, Pfeil I, Teubner I, Rüdiger C, Strauss P (2018) Sensitivity of Sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens 10(9):1396

    Google Scholar 

  • Wiseman G, McNairn H, Homayouni S, Shang J (2014) RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE J Sel Top Appl Earth Obs Remote Sens 7(11):4461–4471

    Article  Google Scholar 

  • Woodhouse IH (2005) Introduction to microwave remote sensing. CRC Press

    Google Scholar 

  • Xie L, Zhang H, Wang C, Shan Z (2015) Similarity analysis of entropy/alpha decomposition between HH/VV dual-and quad-polarization SAR data. Remote Sens Lett 6(3):228–237

    Article  Google Scholar 

  • Xu F, Song Q, Jin YQ (2017) Polarimetric SAR image factorization. IEEE Trans Geosci Remote Sens 55(9):5026–5041

    Article  Google Scholar 

  • Yamaguchi Y (2020) Polarimetric SAR imaging: theory and applications. CRC Press

    Google Scholar 

  • Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2004) Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens 43(8):1699–1706

    Article  Google Scholar 

  • Yamaguchi Y, Sato A, Boerner WM, Sato R, Yamada H (2011) Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans Geosci Remote Sens 49(6):2251–2258

    Article  Google Scholar 

  • Zebker HA, Van Zyl JJ, Held DN (1987) Imaging radar polarimetry from wave synthesis. J Geophys Res 92(B1):683–701

    Article  Google Scholar 

  • van Zyl JJ, Kim Y (2011) Synthetic aperture radar polarimetry, vol 2. Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, D., Bhattacharya, A., Rao, Y.S. (2021). Basic Theory of Radar Polarimetry. In: Radar Remote Sensing for Crop Biophysical Parameter Estimation. Springer Remote Sensing/Photogrammetry. Springer, Singapore. https://doi.org/10.1007/978-981-16-4424-5_2

Download citation

Publish with us

Policies and ethics