Skip to main content

Biomaterials and Scaffold Fabrication Techniques for Tissue Engineering Applications

  • Chapter
  • First Online:
Engineering Materials for Stem Cell Regeneration

Abstract

Tissue engineering is a new field of study that seeks to create artificial tissue that can heal and replace damaged or diseased tissue. Materials, cells, growth factors, and other small molecules play a role in the artificial tissue’s construction. Scaffolding systems can help the target tissues by acting as an extracellular matrix. Various scaffolding fabrication techniques were used for the construction of artificial tissue. For the fabrication of biomaterials for tissue engineering applications, the freeze-drying process, solvent casting and particulate leaching, gas foaming, 3D bioprinting, electrospinning, and thermal-induced phase separation are constantly used. Considerable pore size, mechanical strength, surface topography, cell proliferation, and cell adhesion are all provided by these methods. The established scaffolding can be used as a personalized medication to treat the patient due to its high precision. As a result, in this chapter, we’ve presented the fabrication scaffold techniques for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaal OA, Darwish SM (2013) Review of rapid prototyping techniques for tissue engineering scaffolds fabrication. In: Characterization and development of biosystems and biomaterials. Springer, New York, NY, pp 33–54

    Chapter  Google Scholar 

  • Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  CAS  PubMed  Google Scholar 

  • Aisenbrey EA, Tomaschke A, Kleinjan E, Muralidharan A, Pascual-Garrido C, McLeod RR, Ferguson VL, Bryant SJ (2018) A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci 18(2):1700267. https://doi.org/10.1002/mabi.201700267

    Article  CAS  Google Scholar 

  • Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315

    Article  PubMed  CAS  Google Scholar 

  • Ambekar RS, Kandasubramanian B (2019) Progress in the advancement of porous biopolymer scaffold: tissue engineering application. Ind Eng Chem Res 58(16):6163–6194. https://doi.org/10.1021/acs.iecr.8b05334

    Article  CAS  Google Scholar 

  • Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611. https://doi.org/10.1021/acsapm.8b00165

    Article  CAS  Google Scholar 

  • Bano S, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Tissue engineering. IntechOpen, London. https://doi.org/10.5772/8581

    Chapter  Google Scholar 

  • Barbetta A, Costantini M (2017) Gas foaming technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. Elesvier, Amsterdam. https://doi.org/10.1016/B978-0-08-100979-6.00006-9

    Chapter  Google Scholar 

  • Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR (2020) Aligned and conductive 3d collagen scaffolds for skeletal muscle tissue engineering. bioRxiv

    Google Scholar 

  • de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF (2019) Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci Adv 5(1):eaau8723. https://doi.org/10.1126/sciadv.aau8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beldjilali-Labro M, Garcia Garcia A, Farhat F, Bedoui F, Grosset J-F, Dufresne M, Legallais C (2018) Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11(7):1116

    Article  PubMed Central  CAS  Google Scholar 

  • Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty AK (2018) Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly (lactic acid). ACS Omega 3(4):4400–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He T-C, Reid RR (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 4(4):185–195. https://doi.org/10.1016/j.gendis.2017.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas D, Tran P, Tallon C, O’connor A (2017) Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering. J Biomater Sci Polym Ed 28(2):207–226

    Article  CAS  PubMed  Google Scholar 

  • Brougham CM, Levingstone TJ, Shen N, Cooney GM, Jockenhoevel S, Flanagan TC, O’Brien FJ (2017) Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater 6(21). https://doi.org/10.1002/adhm.201700598

  • Chahal S, Kumar A, Hussian FSJ (2019) Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 30(14):1308–1355

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271. https://doi.org/10.1002/app.45271

    Article  CAS  Google Scholar 

  • Chen WS, Guo LY, Tang CC, Tsai CK, Huang HH, Chin TY, Yang M-L, Chen-Yang YW (2018) The effect of laminin surface modification of electrospun silica nanofiber substrate on neuronal tissue engineering. Nanomaterials 8(3):165

    Article  PubMed Central  CAS  Google Scholar 

  • Chen W, Wang C, Gao Y, Wu Y, Wu G, Shi X, Du Y, Deng H (2020) Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydr Polym 229:115544

    Article  CAS  PubMed  Google Scholar 

  • Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104. https://doi.org/10.1016/j.pneurobio.2015.06.001

    Article  PubMed  Google Scholar 

  • Chua CK, Leong KF, An J (2020) Introduction to rapid prototyping of biomaterials. In: Rapid prototyping of biomaterials. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  • Costantini M, Barbetta A (2018) Gas foaming technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. Elsevier, Amsterdam, pp 127–149

    Chapter  Google Scholar 

  • Dalgic AD, Alshemary AZ, Tezcaner A, Keskin D, Evis Z (2018) Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl 32(10):1392–1405

    Article  CAS  PubMed  Google Scholar 

  • Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT (2018) Essential steps in bioprinting: from pre-to post-bioprinting. Biotechnol Adv 36(5):1481–1504

    Article  CAS  PubMed  Google Scholar 

  • do Vale Morais AR, do Nascimento Alencar É, Júnior FHX, De Oliveira CM, Marcelino HR, Barratt G, Fessi H, Do Egito EST, Elaissari A (2016) Freeze-drying of emulsified systems: a review. Int J Pharm 503(1–2):102–114

    Article  CAS  Google Scholar 

  • Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada A-A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des 83:670–677. https://doi.org/10.1016/j.matdes.2015.06.074

    Article  CAS  Google Scholar 

  • Dorigato A, Moretti V, Dul S, Unterberger SH, Pegoretti A (2017) Electrically conductive nanocomposites for fused deposition modelling. Synth Met 226:7–14. https://doi.org/10.1016/j.synthmet.2017.01.009

    Article  CAS  Google Scholar 

  • Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019:3429527. https://doi.org/10.1155/2019/3429527

    Article  CAS  Google Scholar 

  • Fereshteh Z (2018) Freeze-drying technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. Elesvier, Amsterdam, pp 151–174. https://doi.org/10.1016/B978-0-08-100979-6.00007-0

    Chapter  Google Scholar 

  • Garg A, Bhattacharya A, Batish A (2016) On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Mater Manuf Process 31(4):522–529

    Article  CAS  Google Scholar 

  • Gayer C, Ritter J, Bullemer M, Grom S, Jauer L, Meiners W, Pfister A, Reinauer F, Vučak M, Wissenbach K (2019) Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater Sci Eng C 101:660–673

    Article  CAS  Google Scholar 

  • Guillaume O, Geven MA, Grijpma DW, Tang TT, Qin L, Lai YX, Yuan H, Richards RG, Eglin D (2017) Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography. Polym Adv Technol 28(10):1219–1225. https://doi.org/10.1002/pat.3892

    Article  CAS  Google Scholar 

  • Guillotin B, Catros S, Guillemot F (2013) Laser assisted bio-printing (LAB) of cells and bio-materials based on laser induced forward transfer (LIFT). In: Laser technology in biomimetics. Springer, New York, NY, pp 193–209

    Chapter  Google Scholar 

  • Guo J, Liu X, Lee Miller IIA, Waletzki BE, Yaszemski MJ, Lu L (2017) Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation. J Biomed Mater Res A 105(1):226–235. https://doi.org/10.1002/jbm.a.35862

    Article  CAS  PubMed  Google Scholar 

  • Haaparanta A-M (2015) Highly porous freeze-dried composite scaffolds for cartilage and osteochondral tissue engineering

    Google Scholar 

  • Hospodiuk M, Moncal KK, Dey M, Ozbolat IT (2018) Extrusion-based biofabrication in tissue engineering and regenerative medicine. In: Ovsianikov A, Yoo J, Mironov V (eds) 3D printing and biofabrication. Springer International Publishing, Cham, pp 255–281. https://doi.org/10.1007/978-3-319-45444-3_10

    Chapter  Google Scholar 

  • Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213(1):66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Qin Q, Wang J (2020) A review of stereolithography: processes and systems. Processes 8(9):1138

    Article  CAS  Google Scholar 

  • Hutmacher DW, Woodfield TBF, Dalton PD (2014) Chapter 10 - Scaffold design and fabrication. In: Blitterswijk CAV, De Boer J (eds) Tissue engineering, 2nd edn. Academic Press, Oxford, pp 311–346. https://doi.org/10.1016/B978-0-12-420145-3.00010-9

    Chapter  Google Scholar 

  • Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanišević Z, Barbeck M (2018) An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials 11(11):2199

    Article  PubMed Central  CAS  Google Scholar 

  • Keane TJ, Badylak SF (2014) Biomaterials for tissue engineering applications. Semin Pediatr Surg 23(3):112–118. https://doi.org/10.1053/j.sempedsurg.2014.06.010

    Article  PubMed  Google Scholar 

  • Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N (2020) 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review. WIREs Nanomed Nanobiotechnol 12(4):e1626. https://doi.org/10.1002/wnan.1626

    Article  Google Scholar 

  • Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114

    Article  CAS  PubMed  Google Scholar 

  • Kengla C, Lee SJ, Yoo JJ, Atala A (2020) 11 - 3-D bioprinting technologies for tissue engineering applications. In: Narayan R (ed) Rapid prototyping of biomaterials, 2nd edn. Woodhead Publishing, New Delhi, pp 269–288. https://doi.org/10.1016/B978-0-08-102663-2.00011-3

    Chapter  Google Scholar 

  • Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738. https://doi.org/10.1002/term.1978

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Kim JY, Park CH (2018) Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci Rep 8(1):3424. https://doi.org/10.1038/s41598-018-21618-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishan AP, Cosgriff-Hernandez EM (2017) Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A 105(10):2892–2905. https://doi.org/10.1002/jbm.a.36124

    Article  CAS  PubMed  Google Scholar 

  • Koch L, Gruene M, Unger C, Chichkov B (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14(1):91–97

    CAS  PubMed  Google Scholar 

  • Kumar H, Kim K (2020) Stereolithography 3D bioprinting. In: 3D bioprinting. Springer, New York, NY, pp 93–108

    Chapter  Google Scholar 

  • Li D, Pan X, Sun B, Wu T, Chen W, Huang C, Ke Q, El-Hamshary HA, Al-Deyab SS, Mo X (2015) Nerve conduits constructed by electrospun P (LLA-CL) nanofibers and PLLA nanofiber yarns. J Mater Chem B 3(45):8823–8831

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen J, Liu B, Wang X, Ren D, Xu T (2018) Inkjet printing for biofabrication. In: Ovsianikov A, Yoo J, Mironov V (eds) 3D printing and biofabrication. Springer International Publishing, Cham, pp 283–301. https://doi.org/10.1007/978-3-319-45444-3_26

    Chapter  Google Scholar 

  • Li X, Chen H, Xie S, Wang N, Wu S, Duan Y, Zhang M, Shui L (2020a) Fabrication of photo-crosslinkable poly (trimethylene carbonate)/polycaprolactone nanofibrous scaffolds for tendon regeneration. Int J Nanomedicine 15:6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T (2020b) Inkjet bioprinting of biomaterials. Chem Rev 120(19):10793–10833. https://doi.org/10.1021/acs.chemrev.0c00008

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue. Biomaterials 24:4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0

    Article  CAS  PubMed  Google Scholar 

  • Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, Ogle R, Francis M (2018) Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express 4(2):025013

    Article  Google Scholar 

  • Manavitehrani I, Le TYL, Daly S, Wang Y, Maitz PK, Schindeler A, Dehghani F (2019) Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater Sci Eng C 96:824–830. https://doi.org/10.1016/j.msec.2018.11.088

    Article  CAS  Google Scholar 

  • Martinez Perez C, Olivas-Armendariz I, Castro-Carmona J, Garcia Casillas PE (2011) Scaffolds for tissue engineering via thermally induced phase separation. In: Advances in regenerative medicine. IntechOpen, London. https://doi.org/10.5772/1294

    Chapter  Google Scholar 

  • McKenna E, Klein TJ, Doran MR, Futrega K (2019) Integration of an ultra-strong poly (lactic-co-glycolic acid)(PLGA) knitted mesh into a thermally induced phase separation (TIPS) PLGA porous structure to yield a thin biphasic scaffold suitable for dermal tissue engineering. Biofabrication 12(1):015015

    Article  PubMed  CAS  Google Scholar 

  • Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei Z, Kuth S, Schubert DW, Detsch R, Roether JA, Blunk T, Kordestani S, Boccaccini AR (2020) Preparation and characterization of electrospun blend fibrous polyethylene oxide: polycaprolactone scaffolds to promote cartilage regeneration. Adv Eng Mater 22:2000131

    Article  CAS  Google Scholar 

  • Mishra R, Varshney R, Das N, Sircar D, Roy P (2019) Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 119:155–168. https://doi.org/10.1016/j.eurpolymj.2019.07.007

    Article  CAS  Google Scholar 

  • Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virt Phys Prototyp 12(1):47–59. https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

  • Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188. https://doi.org/10.1016/j.biomaterials.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  • Movahedi M, Asefnejad A, Rafienia M, Khorasani MT (2020) Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: in vitro and in vivo evaluation. Int J Biol Macromol 146:627–637. https://doi.org/10.1016/j.ijbiomac.2019.11.233

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Chen X (2017) A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 12(8):1600671

    Article  CAS  Google Scholar 

  • Ong C, Suhaimin I, Kassim S, Zubir S, Abdullah T (2019) Effect of modified solvent casting/particulate leaching (SCPL) technique on the properties of bioactive glass reinforced polyurethane scaffold for biomedical applications. J Phys Sci 30:115–126. https://doi.org/10.21315/jps2019.30.s2.10

    Article  CAS  Google Scholar 

  • Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280. https://doi.org/10.1080/07853890701881788

    Article  CAS  PubMed  Google Scholar 

  • Prakasam M, Popescu M, Piticescu R, Largeteau A (2017) Fabrication methodologies of biomimetic and bioactive scaffolds for tissue engineering applications. In: Scaffolds in tissue engineeringmaterials, technologies and clinical applications. IntechOpen, London, p 1

    Google Scholar 

  • Qu H (2020) Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun 24:101024

    Article  CAS  Google Scholar 

  • Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825. https://doi.org/10.1080/09205063.2017.1354674

    Article  CAS  PubMed  Google Scholar 

  • Rahim TNAT, Abdullah AM, Md Akil H (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59(4):589–624

    Article  CAS  Google Scholar 

  • Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S (2018) Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega 3(8):8605–8611. https://doi.org/10.1021/acsomega.8b01219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramu M, Ananthasubramanian M, Kumaresan T, Gandhinathan R, Jothi S (2018) Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications. Biomed Mater Eng 29(6):739–755

    CAS  PubMed  Google Scholar 

  • Ranganathan S, Balagangadharan K, Selvamurugan N (2019) Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 133:354–364. https://doi.org/10.1016/j.ijbiomac.2019.04.115

    Article  CAS  PubMed  Google Scholar 

  • Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11(4):042001

    Article  CAS  PubMed  Google Scholar 

  • Reys LL, Silva SS, Pirraco RP, Marques AP, Mano JF, Silva TH, Reis RL (2017) Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur Polym J 95:232–240. https://doi.org/10.1016/j.eurpolymj.2017.08.017

    Article  CAS  Google Scholar 

  • Ribas RG, Schatkoski VM, Montanheiro TLA, de Menezes BRC, Stegemann C, Leite DMG, Thim GP (2019) Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram Int 45(17, Part A):21051–21061. https://doi.org/10.1016/j.ceramint.2019.07.096

    Article  CAS  Google Scholar 

  • Rosadi I, Karina K, Rosliana I, Sobariah S, Afini I, Widyastuti T, Barlian A (2019) In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold. Stem Cell Res Ther 10(1):1–15

    Article  CAS  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262

    Article  CAS  Google Scholar 

  • Salehi M, Bastami F, Rezai Rad M, Nokhbatolfoghahaei H, Paknejad Z, Nazeman P, Hassani A, Khojasteh A (2021) Investigation of cell-free poly lactic acid/nanoclay scaffolds prepared via thermally induced phase separation technique containing hydroxyapatite nanocarriers of erythropoietin for bone tissue engineering applications. Polym Adv Technol 32:670. https://doi.org/10.1002/pat.5120

    Article  CAS  Google Scholar 

  • Santos-Rosales V, Iglesias-Mejuto A, García-González CA (2020) Solvent-free approaches for the processing of scaffolds in regenerative medicine. Polymers 12(3):533

    Article  CAS  PubMed Central  Google Scholar 

  • Saunders R, Derby B (2014) Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev 59:430–448. https://doi.org/10.1179/1743280414Y.0000000040

    Article  CAS  Google Scholar 

  • Schüller-Ravoo S, Teixeira S, Feijen J, Grijpma D, Poot A (2013) Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci 13:1711. https://doi.org/10.1002/mabi.201300399

    Article  CAS  PubMed  Google Scholar 

  • Sharifi E, Azami M, Kajbafzadeh A-M, Moztarzadeh F, Faridi-Majidi R, Shamousi A, Karimi R, Ai J (2016) Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering. Mater Sci Eng C 59:533–541. https://doi.org/10.1016/j.msec.2015.09.037

    Article  CAS  Google Scholar 

  • Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater 2015:140716. https://doi.org/10.1155/2015/140716

    Article  CAS  Google Scholar 

  • Sing SL, Yeong WY, Wiria FE, Tay BY, Zhao Z, Zhao L, Tian Z, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J 23:611

    Article  Google Scholar 

  • Skoog S, Goering P, Narayan J (2013) Stereolithography in tissue engineering. J Mater Sci Mater Med 25:845. https://doi.org/10.1007/s10856-013-5107-y

    Article  CAS  PubMed  Google Scholar 

  • Sola A, Bertacchini J, D’Avella D, Anselmi L, Maraldi T, Marmiroli S, Messori M (2019) Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater Sci Eng C 96:153–165. https://doi.org/10.1016/j.msec.2018.10.086

    Article  CAS  Google Scholar 

  • Sun Q, Rizvi G, Bellehumeur C, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72

    Article  Google Scholar 

  • Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M (2019) Additive manufacturing of biomaterials – the evolution of rapid prototyping. Adv Eng Mater 21(2):1800511. https://doi.org/10.1002/adem.201800511

    Article  CAS  Google Scholar 

  • Vatankhah E, Prabhakaran MP, Semnani D, Razavi S, Morshed M, Ramakrishna S (2014) Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers 101(12):1165–1180

    Article  CAS  PubMed  Google Scholar 

  • Vázquez JJ, Martínez ESM (2019) Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. J Mater Res 34(16):2819–2827

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Kim S-K (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12(1):300–316. https://doi.org/10.3390/md12010300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viera Rey DF, St-Pierre J-P (2019) 6 - Fabrication techniques of tissue engineering scaffolds. In: Mozafari M, Sefat F, Atala A (eds) Handbook of tissue engineering scaffolds, vol 1. Woodhead Publishing, New Delhi, pp 109–125. https://doi.org/10.1016/B978-0-08-102563-5.00006-X

    Chapter  Google Scholar 

  • Vijayavenkataraman S, Yan W-C, Lu WF, Wang C-H, Fuh JYH (2018) 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 132:296–332. https://doi.org/10.1016/j.addr.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  • Wahid F, Khan T, Hussain Z, Ullah H (2018) 30 - Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, New Delhi, pp 701–735. https://doi.org/10.1016/B978-0-12-813741-3.00031-5

    Chapter  Google Scholar 

  • Wang C-Y, Zhang K-H, Fan C-Y, Mo X-M, Ruan H-J, Li F-F (2011) Aligned natural–synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater 7(2):634–643

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tran V, Ma Z, Wen X (2020a) Rapid prototyping technologies for tissue regeneration. In: Rapid prototyping of biomaterials. Elsevier, Amsterdam, pp 113–164

    Chapter  Google Scholar 

  • Wang Z, Huang C, Wang J, Zou B, Abbas CA, Wang X (2020b) Design and characterization of hydroxyapatite scaffolds fabricated by stereolithography for bone tissue engineering application. Proc CIRP 89:170–175. https://doi.org/10.1016/j.procir.2020.05.138

    Article  Google Scholar 

  • Wu T, Li D, Wang Y, Sun B, Li D, Morsi Y, El-Hamshary H, Al-Deyab SS, Mo X (2017) Laminin-coated nerve guidance conduits based on poly (l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. J Mater Chem B 5(17):3186–3194

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Chen Y, Wang X, Xu X, Shen Y, Aldalbahi A, Fetz AE, Bowlin GL, El-Newehy M, Mo X (2020) Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J Mater Sci Technol 59:243

    Article  Google Scholar 

  • Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742

    Article  CAS  Google Scholar 

  • Yousefi A, Akbarzadeh R, Yousefi A-M (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater 102:1304. https://doi.org/10.1002/jbm.b.33101

    Article  CAS  Google Scholar 

  • Yu Y, Ren S, Yao Y, Zhang H, Liu C, Yang J, Yang W, Miao L (2017) Electrospun fibrous scaffolds with iron-doped hydroxyapatite exhibit osteogenic potential with static magnetic field exposure. J Biomed Nanotechnol 13(7):835–847

    Article  CAS  Google Scholar 

  • Zein I, Hutmacher D, Tan K-C, Teoh H (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185. https://doi.org/10.1016/S0142-9612(01)00232-0

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L-S (2018) Fabrication of scaffolds in tissue engineering: a review. Front Mech Eng 13(1):107–119

    Article  Google Scholar 

  • Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Ye J, Fang N, Rodriguez N, Weisgraber T, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15(10):1100–1106. https://doi.org/10.1038/nmat4694

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Chen X (2013) Advances in biomaterials science and biomedical applications. In: Biofabrication of tissue scaffolds. IntechOpen, London, p 319

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea (2018R1A6A1A03024231 and 2021R1A2C1003566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayachandran Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, G.V.Y., Anil, S., Venkatesan, J. (2021). Biomaterials and Scaffold Fabrication Techniques for Tissue Engineering Applications. In: Sheikh, F.A. (eds) Engineering Materials for Stem Cell Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-16-4420-7_24

Download citation

Publish with us

Policies and ethics