Skip to main content

Bioceramics-Based Biomaterials for Bone Tissue Engineering

  • Chapter
  • First Online:
Engineering Materials for Stem Cell Regeneration

Abstract

Finding a novel bioactive bone graft substitute is an emerging area of research for all the time to overcome the traditional bone graft procedures. Bone graft substitute, which induces osteogenesis, is considered suitable graft material in orthopedic clinical practice. Different kinds of biomaterials are used to develop bone grafts using polymers, ceramics, carbon, and metal-based materials. Hydroxyapatite and bioactive glasses are widely used bioceramics. In this chapter, different bioceramics with the combination of alginate, graphene oxide, polylactic glycolic acid, and chitosan are discussed. The preparative procedure, in vitro cell interaction, and in vivo study of bioceramics are also presented. Moreover, the osteogenic properties of the hydroxyapatite and bioactive glasses and their composite biomaterials are discussed in detail. The in vitro and in vivo studies have proven that HA and bioactive glass can induce osteogenesis, a vital parameter for bone tissue regeneration. Hence, this chapter emphasizes that a scaffold system containing hydroxyapatite and bioactive glass composites are ideal for a bone graft substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjaneyulu U, Priyadarshini B, Grace AN, Vijayalakshmi U (2017) Fabrication and characterization of Ag doped hydroxyapatite-polyvinyl alcohol composite nanofibers and its in vitro biological evaluations for bone tissue engineering applications. J Sol-Gel Sci Technol 81:750–761

    Article  CAS  Google Scholar 

  • Arjunan A, Robinson J, Al Ani E, Heaselgrave W, Baroutaji A, Wang C (2020) Mechanical performance of additively manufactured pure silver antibacterial bone scaffolds. J Mech Behav Biomed 112:104090

    Article  CAS  Google Scholar 

  • Barros J, Ferraz MP, Azeredo J, Fernandes M, Gomes P, Monteiro F (2019) Alginate-nanohydroxyapatite hydrogel system: optimizing the formulation for enhanced bone regeneration. Mater Sci Eng C 105:109985

    Article  CAS  Google Scholar 

  • Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M (2009) Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore structure. J Tissue Eng Regen Med 3:54–62

    Article  CAS  PubMed  Google Scholar 

  • Bonetti L, Altomare L, Bono N, Panno E, Campiglio CE, Draghi L, Candiani G, Farè S, Boccaccini AR, De Nardo L (2020) Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. J Mater Sci Mater Med 31:1–12

    Article  CAS  Google Scholar 

  • Brun F, Turco G, Accardo A, Paoletti S (2011) Automated quantitative characterization of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT image analysis. J Mater Sci Mater Med 22:2617–2629

    Article  CAS  PubMed  Google Scholar 

  • Caridade SG, Merino EG, Alves NM, de Zea BV, Boccaccini AR, Mano JF (2013a) Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed 20:173–183

    Article  CAS  Google Scholar 

  • Caridade SG, Merino EG, Alves NM, Mano JF (2013b) Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Mater Sci Eng C 33:4480–4483

    Article  CAS  Google Scholar 

  • Chae T, Yang H, Leung V, Ko F, Troczynski T (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med 24:1885–1894

    Article  CAS  PubMed  Google Scholar 

  • Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Oh S, Ong A, Oh N, Liu Y, Courtney H, Appleford M, Ong J (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res 82:899–906

    Article  CAS  Google Scholar 

  • Chen J, Fan X, Zhou Z, Zou J, Ruan J (2010) The preparation and properties of bioactive composites based on modification bioactive glass and poly (lactide-co-glycolide). Polym-Plast Technol Eng 49:1155–1162

    Article  CAS  Google Scholar 

  • Cheng T, Qu H, Zhang G, Zhang X (2018) Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol 46:1935–1947

    CAS  PubMed  Google Scholar 

  • clinicaltrials.gov (n.d.). https://www.clinicaltrials.gov/ct2/home

  • Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5:115–123

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias C, Cádiz M, Maureira M, Celhay I, Cuadra F, von Marttens A (2018) Bionanocomposite scaffolds based on chitosan–gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 32:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • ctri.nic.in (n.d.). http://ctri.nic.in/Clinicaltrials/login.php

  • Dadhich P, Das B, Pal P, Srivas PK, Dutta J, Ray S, Dhara S (2016) A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold. ACS Appl Mater Interfaces 8:11910–11924. https://doi.org/10.1021/acsami.5b11981

    Article  CAS  PubMed  Google Scholar 

  • Dalavi PA, Prabhu A, Shastry RP, Venkatesan J (2020) Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. J Biomater Sci Polym Ed 31:2025–2043

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  • De Paula F, Barreto I, Rocha-Leão M, Borojevic R, Rossi A, Rosa F, Farina M (2009) Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo. Front Mater Sci China 3:145–153

    Article  Google Scholar 

  • Demirkiran H (2012) Bioceramics for osteogenesis, molecular and cellular advances. In: Regenerative biology of the spine and spinal cord. Springer, New York, NY, pp 134–147

    Chapter  Google Scholar 

  • Dhivya S, Ajita J, Selvamurugan N (2015) Metallic nanomaterials for bone tissue engineering. J Biomed Nanotechnol 11:1675–1700

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Li W, Müller T, Schubert DW, Boccaccini AR, Yao Q, Roether JA (2016) Electrospun polyhydroxybutyrate/poly (ε-caprolactone)/58S sol–gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Appl Mater Interfaces 8:17098–17108

    Article  CAS  PubMed  Google Scholar 

  • Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A (2020) Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 14:1687–1714

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Cervantes I, Morales M, Agustín-Serrano R, Cardenas-García M, Pérez-Luna P, Arroyo-Reyes B, Maldonado-García A (2019) Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing. J Mater Sci 54:9478–9496

    Article  CAS  Google Scholar 

  • Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka A (2014) Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomed Mater 9:065001

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256

    Article  CAS  Google Scholar 

  • Gentile P, Mattioli-Belmonte M, Chiono V, Ferretti C, Baino F, Tonda-Turo C, Vitale-Brovarone C, Pashkuleva I, Reis RL, Ciardelli G (2012) Bioactive glass/polymer composite scaffolds mimicking bone tissue. J Biomed Mater Res 100:2654–2667

    Article  CAS  Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248

    Article  CAS  PubMed  Google Scholar 

  • Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A (2019) Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. J Biomater Appl 33:1128–1144

    Article  CAS  PubMed  Google Scholar 

  • Honda M, Kawanobe Y, Ishii K, Konishi T, Mizumoto M, Kanzawa N, Matsumoto M, Aizawa M (2013) In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Mater Sci Eng C 33:5008–5018

    Article  CAS  Google Scholar 

  • Ignjatovic N, Ajdukovic Z, Rajkovic J, Najman S, Mihailovic D, Uskokovic D (2015) Enhanced osteogenesis of nanosized cobalt-substituted hydroxyapatite. J Bionic Eng 12:604–612

    Article  Google Scholar 

  • Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, Gonfa G, Iqbal F, Jamal A, Rahim A (2018) Ionic liquid as a potential solvent for preparation of collagen-alginate-hydroxyapatite beads as bone filler. J Biomater Sci Polym Ed 29:1168–1184

    Article  CAS  PubMed  Google Scholar 

  • Jo Y-Y, Kim S-G, Kwon K-J, Kweon H, Chae W-S, Yang W-G, Lee E-Y, Seok H (2017) Silk fibroin-alginate-hydroxyapatite composite particles in bone tissue engineering applications in vivo. Int J Mol Sci 18:858

    Article  PubMed Central  CAS  Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  CAS  PubMed  Google Scholar 

  • Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  PubMed  Google Scholar 

  • Khan MUA, Al-Thebaiti MA, Hashmi MU, Aftab S, Abd Razak SI, Abu Hassan S, Abdul Kadir MR, Amin R (2020) Synthesis of silver-coated bioactive nanocomposite scaffolds based on grafted beta-glucan/hydroxyapatite via freeze-drying method: anti-microbial and biocompatibility evaluation for bone tissue engineering. Materials 13:971

    Article  CAS  PubMed Central  Google Scholar 

  • Lakhkar NJ, Park J-H, Mordan NJ, Salih V, Wall IB, Kim H-W, King SP, Hanna JV, Martin RA, Addison O (2012) Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomater 8:4181–4190

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, Jeong C-M, Huh JB, Han D-W (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:1–13

    Article  Google Scholar 

  • Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Ding Y, Yu S, Yao Q, Boccaccini AR (2015) Multifunctional chitosan-45S5 bioactive glass-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microsphere composite membranes for guided tissue/bone regeneration. ACS Appl Mater Interfaces 7:20845–20854

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen J, Xu Z, Zou Q, Yang L, Ma M, Shu L, He Z, Ye C (2020) Osteoblastic differentiation of stem cells induced by graphene oxide-hydroxyapatite-alginate hydrogel composites and construction of tissue-engineered bone. J Mater Sci Mater Med 31:1–13

    Article  CAS  Google Scholar 

  • Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res 71:52–65

    Article  CAS  Google Scholar 

  • Lin W-C, Yao C, Huang T-Y, Cheng S-J, Tang C-M (2019) Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent Mater 35:751–762

    Article  CAS  PubMed  Google Scholar 

  • Lobo SE, Livingston Arinzeh T (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826

    Article  CAS  PubMed Central  Google Scholar 

  • Magri AMP, Fernandes KR, Assis L, Kido HW, Avanzi IR, da Cruz MM, Granito RN, Braga FJC, Rennó ACM (2019a) Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation. Int J Biol Macromol 134:869–881

    Article  CAS  PubMed  Google Scholar 

  • Magri AMP, Fernandes KR, Kido HW, Fernandes GS, de Souza FS, Gabbai-Armelin PR, Braga FJC, Góes CP, dos Santos Prado JL, Granito RN (2019b) Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. J Mater Sci Mater Med 30:105

    Article  PubMed  CAS  Google Scholar 

  • Maji K, Dasgupta S, Bhaskar R, Gupta MK (2020) Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering. Biomed Mater 15:055019

    Article  CAS  PubMed  Google Scholar 

  • Marsich E, Bellomo F, Turco G, Travan A, Donati I, Paoletti S (2013) Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med 24:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Mattioli-Belmonte M, De Maria C, Vitale-Brovarone C, Baino F, Dicarlo M, Vozzi G (2017) Pressure-activated microsyringe (PAM) fabrication of bioactive glass–poly (lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. J Tissue Eng Regen Med 11:1986–1997

    Article  CAS  PubMed  Google Scholar 

  • Mooyen S, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Suntornsaratoon P, Krishnamra N, Tang IM, Pon-On W (2017) Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ ChiCol) for bone scaffolds. J Biomed Mater Res 105:1758–1766

    Article  CAS  Google Scholar 

  • Moreira CD, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C 58:1207–1216

    Article  CAS  Google Scholar 

  • Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H (2019) Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C 97:67–77

    Article  CAS  Google Scholar 

  • Nerantzaki MC, Koliakou IG, Kaloyianni MG, Terzopoulou ZN, Siska EK, Karakassides MA, Boccaccini AR, Bikiaris DN (2017) New N-(2-carboxybenzyl) chitosan composite scaffolds containing nanoTiO2 or bioactive glass with enhanced cell proliferation for bone-tissue engineering applications. Int J Polym Mater 66:71–81

    Article  CAS  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  CAS  PubMed  Google Scholar 

  • Oudadesse H, Najem S, Mosbahi S, Rocton N, Refifi J, El Feki H, Lefeuvre B (2020) Development of hybrid scaffold: bioactive glass nanoparticles/chitosan for tissue engineering applications. J Biomed Mater Res 109:590. https://doi.org/10.1002/jbm.a.37043

    Article  CAS  Google Scholar 

  • Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang I-M (2014) Mechanical properties, biological activity and protein controlled release by poly (vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C 38:63–72

    Article  CAS  Google Scholar 

  • Reeve L, Baldrick P (2017) Biocompatibility assessments for medical devices–evolving regulatory considerations. Exp Rev Med Dev 14:161–167

    Article  CAS  Google Scholar 

  • Rezwan K, Chen Q, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262

    Article  CAS  Google Scholar 

  • Ryu J-H, Kwon J-S, Kim K-M, Hong HJ, Koh W-G, Lee J, Lee H-J, Choi H-J, Yi S, Shin H (2019) Synergistic effect of porous hydroxyapatite scaffolds combined with bioactive glass/poly (lactic-co-glycolic acid) composite fibers promotes osteogenic activity and bioactivity. ACS Omega 4:2302–2310

    Article  CAS  Google Scholar 

  • Saatchi A, Arani AR, Moghanian A, Mozafari M (2020) Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. Ceram Int 47:9447–9461

    Article  CAS  Google Scholar 

  • Saini RK, Bagri LP, Bajpai A (2019) Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B Biointerfaces 177:211–218

    Article  CAS  Google Scholar 

  • Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045

    Article  CAS  PubMed  Google Scholar 

  • Saravanan S, Chawla A, Vairamani M, Sastry T, Subramanian K, Selvamurugan N (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104:1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai W-B, Narashiman S, Ramachandran M, Ambigapathi M (2017) Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 98:67–74

    Article  PubMed  CAS  Google Scholar 

  • Shaheen TI, Montaser A, Li S (2019) Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 121:814–821

    Article  CAS  PubMed  Google Scholar 

  • Shalumon K, Sowmya S, Sathish D, Chennazhi K, Nair SV, Jayakumar R (2013) Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotechnol 9:430–440

    Article  CAS  PubMed  Google Scholar 

  • Shegarfi H, Reikeras O (2009) Bone transplantation and immune response. J Orthop Surg 17:206–211

    Article  Google Scholar 

  • Sowjanya J, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300

    Article  CAS  PubMed  Google Scholar 

  • Stanić V, Janaćković D, Dimitrijević S, Tanasković SB, Mitrić M, Pavlović MS, Krstić A, Jovanović D, Raičević S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518

    Article  CAS  Google Scholar 

  • Sumathra M, Sadasivuni KK, Kumar SS, Rajan M (2018) Cisplatin-Loaded graphene oxide/chitosan/hydroxyapatite composite as a promising tool for osteosarcoma-affected bone regeneration. ACS Omega 3:14620–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4

    Article  CAS  PubMed  Google Scholar 

  • Tohamy KM, Mabrouk M, Soliman IE, Beherei HH, Aboelnasr MA (2018) Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: in vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol 112:448–460

    Article  CAS  PubMed  Google Scholar 

  • Van Heest A, Swiontkowski M (1999) Bone-graft substitutes. Lancet 353:S28–S29

    Article  Google Scholar 

  • Venkatesan J, Kim S-K (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesan J, Pallela R, Bhatnagar I, Kim S-K (2012) Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Nithya R, Sudha PN, Kim S-K (2014) Role of alginate in bone tissue engineering. In: Advances in food and nutrition research, vol 73. Elsevier, Amstedam, pp 45–57

    Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Qiu J, Guo W, Yu X, Nie J, Zhang J, Zhang X, Liu Z, Mou X, Li L (2017) A nanostructured molybdenum disulfide film for promoting neural stem cell neuronal differentiation: toward a nerve tissue-engineered 3D scaffold. Adv Biosyst 1:1600042

    Article  CAS  Google Scholar 

  • Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sass F, Duda G, Schmidt-Bleek K (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res 7:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y (2020) Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Front Bioeng Biotechnol 8:1261

    Article  Google Scholar 

  • Yadav U, Mishra H, Singh V, Kashyap S, Srivastava A, Yadav S, Saxena PS (2019) Enhanced osteogenesis by molybdenum disulfide nanosheet reinforced hydroxyapatite nanocomposite scaffolds. ACS Biomater Sci Eng 5:4511–4521

    Article  CAS  PubMed  Google Scholar 

  • Yang H-W, Lin M-H, Xu Y-Z, Shang G-W, Wang R-R, Chen K (2015) Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces. Int J Clin Exp Med 8:257

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T (2018) Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 79:265–275

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jia B, Zhang Z, Qu X, Li G, Lin W, Zhu D, Dai K, Zheng Y (2020) Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun 11:1–16

    CAS  Google Scholar 

  • Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR (2014) Bioglass®/chitosan–polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res 102:4510–4518

    Google Scholar 

  • Yao Q, Li W, Yu S, Ma L, Jin D, Boccaccini AR, Liu Y (2015) Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Mater Sci Eng C 56:473–480

    Article  CAS  Google Scholar 

  • Zhang X, Nie J, Yang X, Liu Z, Guo W, Qiu J, Wang S, Yu X, Guan Y, Liu H (2018) Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells. Appl Mater Today 10:164–172

    Article  Google Scholar 

  • Zheng L, Jiang X, Chen X, Fan H, Zhang X (2014) Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater 9:065004

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea (2018R1A6A1A03024231 and 2021R1A2C1003566). The book chapter is also supported by a seed grant of Yenepoya (Deemed to be University), Mangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayachandran Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalavi, P.A., Anil, S., Venkatesan, J. (2021). Bioceramics-Based Biomaterials for Bone Tissue Engineering. In: Sheikh, F.A. (eds) Engineering Materials for Stem Cell Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-16-4420-7_20

Download citation

Publish with us

Policies and ethics