Skip to main content

A Survey on Pedestrian Detection System Using Computer Vision and Deep Learning

  • Conference paper
  • First Online:
Advanced Computational Paradigms and Hybrid Intelligent Computing

Abstract

An important research topic in computer vision is pedestrian detection. Research in this topic has wide applications using deep learning methods that are capable of learning high-level representation of features necessary for automatic detection of the pedestrians. The objective of this paper is to study various systems based on vision-based pedestrian detection using deep learning frameworks. The paper considers the performance of some methods over the dataset Caltech, INRIA and KITTI in the span of study. In the extensive study, it has been found out ExtAtt method has gained maximum average precision rate on KITTI dataset, while PCN method has achieved lower log average miss rate on both Caltech and INRIA dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A., Ferguson, D.: Real-Time Pedestrian Detection with Deep Network Cascades (2015)

    Google Scholar 

  2. Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial expression recognition: Development and applications to human computer interaction. In: 2003 Conference on Computer Vision and Pattern Recognition Workshop, vol. 5, pp. 53–53. IEEE (2003)

    Google Scholar 

  3. Bayoumi, A.E.M., Karkowski, P., Bennewitz, M.: Speeding up person finding using hidden Markov models. Robot. Auton. Syst. 115, 40–48 (2019)

    Article  Google Scholar 

  4. Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten years of pedestrian detection, what have we learned? In: European Conference on Computer Vision, pp. 613–627. Springer (2014)

    Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer New York (2006)

    Google Scholar 

  6. Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.: Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300, 17–33 (2018)

    Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  9. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  10. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2011)

    Article  Google Scholar 

  11. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: Survey and experiments. IEEE Trans. Pattern Anal. Machine Intell. 31(12), 2179–2195 (2008)

    Google Scholar 

  12. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Machine Intell. 32(9), 1627–1645 (2009)

    Google Scholar 

  13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient matching of pictorial structures. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 66–73. IEEE (2000)

    Google Scholar 

  14. Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: Decision Forests for Computer Vision and Medical Image Analysis, pp. 143–157. Springer (2013)

    Google Scholar 

  15. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Computer Vis. 73(1), 41–59 (2007)

    Google Scholar 

  16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  17. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, L., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  20. Karthika, N.J, Chandran, S.: Recent developments in pedestrian detection using deep learning. In: 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 353–358. IEEE (2019)

    Google Scholar 

  21. Kim, B., Yuvaraj, N., Sri Preethaa, K.R., Santhosh, R., Sabari, A.: Enhanced pedestrian detection using optimized deep convolution neural network for smart building surveillance. Soft Comput. 1–12 (2020)

    Google Scholar 

  22. Kim, J.H., Batchuluun, G., Park, K.R.: Pedestrian detection based on faster R-CNN in nighttime by fusing deep convolutional features of successive images. Expert Syst. Appl. 114, 15–33 (2018)

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Google Scholar 

  24. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Zico Kolter, J., Langer, D., Pink, O., Pratt, V., et al.: Towards fully autonomous driving: Systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168. IEEE (2011)

    Google Scholar 

  25. Li, H., Wu, Z., Zhang, J.: Pedestrian detection based on deep learning model. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 796–800. IEEE (2016)

    Google Scholar 

  26. Mallat, S.G.: A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11(7), 674–693 (1989)

    Google Scholar 

  27. Mateus, A., Ribeiro, D., Miraldo, P., Nascimento, J.C.: Efficient and robust pedestrian detection using deep learning for human-aware navigation. Robot. Auton. Syst. 113, 23–37 (2019)

    Google Scholar 

  28. Munder, S., Gavrila, D.M.: An experimental study on pedestrian classification. IEEE Trans. Pattern Anal. Machine Intell. 28(11), 1863–1868 (2006)

    Google Scholar 

  29. Munder, S., Schnorr, C., Gavrila, D.M.: Pedestrian detection and tracking using a mixture of view-based shape–texture models. IEEE Trans. Intell. Transp. Syst. 9(2), 333–343 (2008)

    Google Scholar 

  30. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 582–585. IEEE (1994)

    Google Scholar 

  31. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 193–199. IEEE (1997)

    Google Scholar 

  32. Piccardi, M.: Background subtraction techniques: A review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol. 4, pp. 3099–3104. IEEE (2004)

    Google Scholar 

  33. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  34. Rohan, A., Rabah, M., Kim, S.-H.: Convolutional neural network-based real-time object detection and tracking for parrot AR drone 2. IEEE Access 7, 69575–69584 (2019)

    Article  Google Scholar 

  35. Shen, J., Xiong, X., Xue, Z., Bian, Y.: A convolutional neural-network-based pedestrian counting model for various crowded scenes. Comput.-Aided Civil Infrastruct. Eng. 34(10), 897–914 (2019)

    Article  Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

  37. Urmson, C., et al.: Self-driving cars and the urban challenge. IEEE Intell. Syst. 23(2), 66–68 (2008)

    Article  Google Scholar 

  38. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  39. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Google Scholar 

  40. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

    Google Scholar 

  41. Wang, S., Cheng, J., Liu, H., Wang, F., Zhou, H.: Pedestrian detection via body part semantic and contextual information with DNN. IEEE Trans. Multimedia 20(11), 3148–3159 (2018)

    Article  Google Scholar 

  42. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39. IEEE (2009)

    Google Scholar 

  43. Wang, Y., Piérard, S., Su, S.-Z., Jodoin, P.-M.: Improving pedestrian detection using motion-guided filtering. Pattern Recogn. Lett. 96, 106–112 (2017)

    Google Scholar 

  44. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3415–3424 (2017)

    Google Scholar 

  45. You, M., Zhang, Y., Shen, C., Zhang, X.: An extended filtered channel framework for pedestrian detection. IEEE Trans. Intell. Transp. Syst. 19(5), 1640–1651 (2018)

    Article  Google Scholar 

  46. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pattanayak, S., Ningthoujam, C., Pradhan, N. (2022). A Survey on Pedestrian Detection System Using Computer Vision and Deep Learning. In: Gandhi, T.K., Konar, D., Sen, B., Sharma, K. (eds) Advanced Computational Paradigms and Hybrid Intelligent Computing . Advances in Intelligent Systems and Computing, vol 1373. Springer, Singapore. https://doi.org/10.1007/978-981-16-4369-9_41

Download citation

Publish with us

Policies and ethics