Skip to main content

Development of Bone Strength Prediction Method by Using MCA with Damage Mechanics

  • Chapter
  • First Online:
Multidisciplinary Computational Anatomy
  • 978 Accesses

Abstract

The goal of this research project was to establish an effective prediction method of bone strength using CT-FEM. In the present study, three sub-projects were conducted, namely, deformation analysis of micro-CT image-based cancellous bone model, comparison of CT-FEA with cadaveric experiment, and analysis of the correlation between vertebra strength and lumbar YAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    Article  CAS  Google Scholar 

  2. Liang D, Ye LQ, Jiang XB, Yang P, Zhou GQ, Zhang SC, et al. Biomechanical effects of cement distribution in the fractured area on osteoporotic vertebral compression fractures: a three-dimensional finite element analysis. J Sur Res. 2015;195:246–56.

    Article  CAS  Google Scholar 

  3. Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res. 1994;28:1329–36.

    Article  CAS  Google Scholar 

  4. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.

    Article  CAS  Google Scholar 

  5. Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27:1159–68.

    Article  CAS  Google Scholar 

  6. Bessho M, Ohnishi I, Matsuyama J, et al. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40:1745–53.

    Article  Google Scholar 

  7. Bessho M, Ohnishi I, et al. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone. 2009;45:226–31.

    Article  Google Scholar 

  8. Abdullah AH, Todo M. Effects of hip arthroplasties on bone adaptation in lower limbs: a computational study. J Biosci Med. 2015;3:1–7.

    CAS  Google Scholar 

  9. Abdullah AH, Todo M. Stress evaluation of lower limbs with hip osteoarthritis and hip arthroplasty. J Med Bioeng. 2015;4:100–4.

    Google Scholar 

  10. Takano H, Yonezawa I, Todo M, et al. Biomechanical study of the effects of balloon kyphoplasty on the adjacent vertebrae. J Biomed Sci Eng. 2016;9:478–87.

    Article  Google Scholar 

  11. Mazlan MH, Todo M, et al. Effect of cage insertion orientation on stress profiles and subsidence phenomenon in posterior lumbar innerbody fusion. J Med Bioeng. 2016;5:93–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsugu Todo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todo, M. (2022). Development of Bone Strength Prediction Method by Using MCA with Damage Mechanics. In: Hashizume, M. (eds) Multidisciplinary Computational Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4325-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4325-5_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4324-8

  • Online ISBN: 978-981-16-4325-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics