Skip to main content

Protective Effect of Insole on Foot Injury

  • Chapter
  • First Online:
Biomechanics of Injury and Prevention
  • 591 Accesses

Abstract

Foot injuries such as fractures, ligaments tear, ankle instability often occur often occurred in sports and work. This chapter described protective issues from the perspective of the objective data in the context of customized insole. The foot-related injuries issues were approached from the aspects of material, structure and effect of insole. For the foot deformity of flatfoot patients, to avoid the future injuries of foot, the lower material hardness of insole was more suitable for the plantar pressure release of severe flatfoot. The higher material hardness of insole was conducive to improve structure of the medial longitudinal arch. In addition, the biomechanical effect of orthopedic insole on correction of flatfoot had been investigated in comparison data of subject. The effective correction was very helpful for flatfoot patients and even affect loading on the internal tissue. The biomechanical behavior on foot tissue was studied by finite element simulation and experiments. This would be helpful for foot injury patients to avoid future complications and reasonable rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams AE, Blake A, Cherry L, Alcacer-Pitarch B, Edwards CJ, Hopkinson N, Vital EMJ, Teh LS (2017) Patients’ experiences of lupus-related foot problems: a qualitative investigation. Lupus 26(11):1174–1181. https://doi.org/10.1177/0961203317696590

    Article  CAS  PubMed  Google Scholar 

  2. Echarri JJ, Forriol F (2003) The development in footprint morphology in 1851 Congolese children from urban and rural areas, and the relationship between this and wearing shoes. J Pediatr Orthop B 12(2):141–146. https://doi.org/10.1097/01.bpb.0000049569.52224.57

    Article  PubMed  Google Scholar 

  3. Manter J (2005) Movements of the subtalar and transverse tarsal joints. Anat Rec 80:397–410. https://doi.org/10.1002/ar.1090800402

    Article  Google Scholar 

  4. Mackesy D (1974) Functional anatomy of the foot and ankle. J Can Athl Ther Association 1(3):26–34

    Google Scholar 

  5. Procter P, Paul JP (1982) Ankle joint biomechanics. J Biomech 15(9):627–634. https://doi.org/10.1016/0021-9290(82)90017-3

    Article  CAS  PubMed  Google Scholar 

  6. Tsung BYS, Zhang M, Fan YB, Boone DA (2003) Quantitative comparison of plantar foot shapes under different weight-bearing conditions. J Rehabil Res Dev 40(6):517–526. https://doi.org/10.1682/jrrd.2003.11.0517

    Article  PubMed  Google Scholar 

  7. Graham AS, Stephenson J, Williams AE (2017) A survey of people with foot problems related to rheumatoid arthritis and their educational needs. J Foot Ankle Res 10:12–12. https://doi.org/10.1186/s13047-017-0193-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stolt M, Suhonen R, Leino-Kilpi H (2017) Foot health in patients with rheumatoid arthritis-a scoping review. Rheumatol Int 37(9):1413–1422. https://doi.org/10.1007/s00296-017-3699-0

    Article  PubMed  Google Scholar 

  9. Bezza A, Niamane R, Amine B, El Maghraoui A, Bensabbah R, Hajjaj-Hassouni N (2004) Involvement of the foot in patients with psoriatic arthritis. A review of 26 cases. Joint Bone Spine 71(6):546–549. https://doi.org/10.1016/j.jbspin.2002.06.001

    Article  CAS  PubMed  Google Scholar 

  10. Firth J, Nelson EA, Briggs M, Gorecki C (2011) A qualitative study to explore the impact of foot ulceration on health-related quality of life in patients with rheumatoid arthritis. Int J Nurs Stud 48(11):1401–1408. https://doi.org/10.1016/j.ijnurstu.2011.05.010

    Article  PubMed  Google Scholar 

  11. Goodacre LJ, Candy FJ (2011) ‘If I didn’t have RA I wouldn’t give them house room’: the relationship between RA, footwear and clothing choices. Rheumatology (Oxford) 50(3):513–517. https://doi.org/10.1093/rheumatology/keq347

    Article  Google Scholar 

  12. Wearing SC, Hills AP, Byrne NM, Hennig EM, McDonald M (2004) The arch index: a measure of flat or fat feet? Foot Ankle Int 25(8):575–581. https://doi.org/10.1177/107110070402500811

    Article  PubMed  Google Scholar 

  13. Silvester RN, Williams AE, Dalbeth N, Rome K (2010) ‘Choosing shoes’: a preliminary study into the challenges facing clinicians in assessing footwear for rheumatoid patients. J Foot Ankle Res 3:24–24. https://doi.org/10.1186/1757-1146-3-24

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hendry GJ, Brenton-Rule A, Barr G, Rome K (2015) Footwear experiences of people with chronic musculoskeletal diseases. Arthritis Care Res 67(8):1164–1172. https://doi.org/10.1002/acr.22548

    Article  Google Scholar 

  15. Buerk A, Albert M (2001) Advances in pediatric foot and ankle treatment. Curr Opin Orthop 12:437–442. https://doi.org/10.1097/00001433-200112000-00002

    Article  Google Scholar 

  16. Guo J, Wang L, Chen W, Du CF, Mo Z, Fan Y-b (2016) Parametric study of orthopedic insole of valgus foot on partial foot amputation. Comput Methods Biomech Biomed Engin 19(8):894–900. https://doi.org/10.1080/10255842.2015.1076803

    Article  PubMed  Google Scholar 

  17. Guo JC, Wang LZ, Mo ZJ, Chen W, Fan YB (2016) Biomechanical behavior of valgus foot in children with cerebral palsy: A comparative study. J Biomech 48(12):3170–3177. https://doi.org/10.1080/10255842.2015.1076803

    Article  Google Scholar 

  18. Chen JP, Chung MJ, Wang MJ (2009) Flatfoot prevalence and foot dimensions of 5- to 13-year-old children in Taiwan. Foot Ankle Int 30(4):326–332. https://doi.org/10.3113/FAI.2009.0326

    Article  PubMed  Google Scholar 

  19. Johnson R, Osbourne A, Rispoli J, Verdin C (2018) The diabetic foot assessment. Orthop Nurs 37(1):13–21. https://doi.org/10.1097/NOR.0000000000000414

    Article  PubMed  Google Scholar 

  20. Murley GS, Landorf KB, Menz HB (2010) Do foot orthoses change lower limb muscle activity in flat-arched feet towards a pattern observed in normal-arched feet? Clin Biomech (Bristol, Avon) 25(7):728–736. https://doi.org/10.1016/j.clinbiomech.2010.05.001

    Article  Google Scholar 

  21. Nigg BM, Nurse MA, Stefanyshyn DJ (1999) Shoe inserts and orthotics for sport and physical activities. Med Sci Sports Exerc 31(7 Suppl):S421–S428. https://doi.org/10.1097/00005768-199907001-00003

    Article  CAS  PubMed  Google Scholar 

  22. Collins N, Bisset L, McPoil T, Vicenzino B (2007) Foot orthoses in lower limb overuse conditions: a systematic review and meta-analysis. Foot Ankle Int 28(3):396–412. https://doi.org/10.3113/FAI.2007.0396

    Article  PubMed  Google Scholar 

  23. McMillan A, Payne C (2008) Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review. J Foot Ankle Res 1(1):13–13. https://doi.org/10.1186/1757-1146-1-13

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee JS, Kim KB, Jeong JO, Kwon NY, Jeong SM (2015) Correlation of foot posture index with plantar pressure and radiographic measurements in pediatric flatfoot. Ann Rehabil Med 39(1):10–17. https://doi.org/10.5535/arm.2015.39.1.10

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bonanno DR, Landorf KB, Menz HB (2011) Pressure-relieving properties of various shoe inserts in older people with plantar heel pain. Gait Posture 33(3):385–389. https://doi.org/10.1016/j.gaitpost.2010.12.009

    Article  PubMed  Google Scholar 

  26. Murley GS, Menz HB, Landorf KB (2009) A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J Foot Ankle Res 2:22–22. https://doi.org/10.1186/1757-1146-2-22

    Article  PubMed  PubMed Central  Google Scholar 

  27. Firth J, Hale C, Helliwell P, Hill J, Nelson EA (2008) The prevalence of foot ulceration in patients with rheumatoid arthritis. Arthritis Rheum 59(2):200–205. https://doi.org/10.1002/art.23335

    Article  PubMed  Google Scholar 

  28. Naidoo S, Anderson S, Mills J, Parsons S, Breeden S, Bevan E, Edwards C, Otter S (2011) “I could cry, the amount of shoes I can’t get into”: A qualitative exploration of the factors that influence retail footwear selection in women with rheumatoid arthritis. J Foot Ankle Res 4:21–21. https://doi.org/10.1186/1757-1146-4-21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Williams AE, Rome K, Nester CJ (2007) A clinical trial of specialist footwear for patients with rheumatoid arthritis. Rheumatology (Oxford) 46(2):302–307. https://doi.org/10.1093/rheumatology/kel234

    Article  CAS  Google Scholar 

  30. Rome K, Frecklington M, McNair P, Gow P, Dalbeth N (2011) Footwear characteristics and factors influencing footwear choice in patients with gout. Arthritis Care Res 63(11):1599–1604. https://doi.org/10.1002/acr.20582

    Article  Google Scholar 

  31. Williams AE, Nester CJ, Ravey MI (2007) Rheumatoid arthritis patients’ experiences of wearing therapeutic footwear—a qualitative investigation. BMC Musculoskelet Disord 8:104–104. https://doi.org/10.1186/1471-2474-8-104

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brenton-Rule A, Hendry GJ, Barr G, Rome K (2014) An evaluation of seasonal variations in footwear worn by adults with inflammatory arthritis: a cross-sectional observational study using a web-based survey. J Foot Ankle Res 7:36–36. https://doi.org/10.1186/s13047-014-0036-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Healy A, Dunning DN, Chockalingam N (2012) Effect of insole material on lower limb kinematics and plantar pressures during treadmill walking. Prosthetics Orthot Int 36(1):53–62. https://doi.org/10.1177/0309364611429986

    Article  Google Scholar 

  34. Murley GS, Bird AR (2006) The effect of three levels of foot orthotic wedging on the surface electromyographic activity of selected lower limb muscles during gait. Clin Biomech (Bristol, Avon) 21(10):1074–1080. https://doi.org/10.1016/j.clinbiomech.2006.06.007

    Article  Google Scholar 

  35. Nester CJ, van der Linden ML, Bowker P (2003) Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 17(2):180–187. https://doi.org/10.1016/s0966-6362(02)00065-6

    Article  CAS  PubMed  Google Scholar 

  36. Nurse MA, Hulliger M, Wakeling JM, Nigg BM, Stefanyshyn DJ (2005) Changing the texture of footwear can alter gait patterns. J Electromyogr Kinesiol: Official Journal of the International Society of Electrophysiological Kinesiology 15(5):496–506. https://doi.org/10.1016/j.jelekin.2004.12.003

    Article  Google Scholar 

  37. Kelleher KJ, Spence WD, Solomonidis S, Apatsidis D (2010) The effect of textured insoles on gait patterns of people with multiple sclerosis. Gait Posture 32(1):67–71. https://doi.org/10.1016/j.gaitpost.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Mündermann A, Wakeling JM, Nigg BM, Humble RN, Stefanyshyn DJ (2006) Foot orthoses affect frequency components of muscle activity in the lower extremity. Gait Posture 23(3):295–302. https://doi.org/10.1016/j.gaitpost.2005.03.004

    Article  PubMed  Google Scholar 

  39. Hellstrand Tang U, Zügner R, Lisovskaja V, Karlsson J, Hagberg K, Tranberg R (2014) Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers—A two-year, randomized trial. J Clin Transl Endocrinol 1(4):121–132. https://doi.org/10.1016/j.jcte.2014.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  40. Badlissi F, Dunn JE, Link CL, Keysor JJ, McKinlay JB, Felson DT (2005) Foot musculoskeletal disorders, pain, and foot-related functional limitation in older persons. J Am Geriatr Soc 53(6):1029–1033. https://doi.org/10.1111/j.1532-5415.2005.53315.x

    Article  PubMed  Google Scholar 

  41. McCormick CJ, Bonanno DR, Landorf KB (2013) The effect of customised and sham foot orthoses on plantar pressures. J Foot Ankle Res 6:19–19. https://doi.org/10.1186/1757-1146-6-19

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vie B, Nester CJ, Porte LM, Behr M, Weber JP, Jammes Y (2015) Pilot study demonstrating that sole mechanosensitivity can be affected by insole use. Gait Posture 41(1):263–268. https://doi.org/10.1016/j.gaitpost.2014.10.012

    Article  PubMed  Google Scholar 

  43. Santos D, Cameron-Fiddes V (2014) Effects of off-the-shelf foot orthoses on plantar foot pressures in patients with early rheumatoid arthritis. J Am Podiatr Med Assoc 104(6):610–616. https://doi.org/10.7547/8750-7315-104.6.610

    Article  PubMed  Google Scholar 

  44. Chapman GJ, Halstead J, Redmond AC (2016) Comparability of off the shelf foot orthoses in the redistribution of forces in midfoot osteoarthritis patients. Gait Posture 49:235–240. https://doi.org/10.1016/j.gaitpost.2016.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  45. Harris RI, Beath T (1948) Hypermobile flat-foot with short tendo achillis. J Bone Joint Surg Am 30A(1):116–140

    Article  CAS  Google Scholar 

  46. Su S, Mo Z, Guo J, Fan Y (2017) The effect of arch height and material hardness of personalized insole on correction and tissues of flatfoot. J Healthcare Engin 2017:8614341–8614341. https://doi.org/10.1155/2017/8614341

    Article  Google Scholar 

  47. Cheng JC, Leung SS, Leung AK, Guo X, Sher A, Mak AF (1997) Change of foot size with weightbearing. A study of 2829 children 3 to 18 years of age. Clin Orthop Relat Res 342(342):123–131

    Google Scholar 

  48. Abaraogu UO, Onyeka C, Ucheagwu C, Ozioko M (2016) Association between flatfoot and age is mediated by sex: A cross-sectional study. Polish Ann Med 23(2):141–146. https://doi.org/10.1016/j.poamed.2016.02.006

    Article  Google Scholar 

  49. Caravaggi P, Lullini G, Berti L, Giannini S, Leardini A (2018) Functional evaluation of bilateral subtalar arthroereisis for the correction of flexible flatfoot in children: 1-year follow-up(Article). Gait Posture 64:152–158. https://doi.org/10.1016/j.gaitpost.2018.06.023

    Article  PubMed  Google Scholar 

  50. Arnold JB, May T, Bishop C (2018) Predictors of the Biomechanical effects of customized foot orthoses in adults with flat-arched feet. Clin J Sport Med 28(4):398–400. https://doi.org/10.1097/JSM.0000000000000461

    Article  PubMed  Google Scholar 

  51. Vanderwilde R, Staheli LT, Chew DE, Malagon V (1988) Measurements on radiographs of the foot in normal infants and children. J Bone Joint Surg Am 70(3):407–415. https://doi.org/10.1016/S0022-3468(89)80455-5

    Article  CAS  PubMed  Google Scholar 

  52. Branthwaite H, Chockalingam N, Greenhalgh A (2013) The effect of shoe toe box shape and volume on forefoot interdigital and plantar pressures in healthy females. J Foot Ankle Res 6(1):28–37. https://doi.org/10.1186/1757-1146-6-28

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gilmour JC, Burns Y (2001) The measurement of the medial longitudinal arch in children. Foot Ankle Int 22(6):493–498. https://doi.org/10.1177/107110070102200607

    Article  CAS  PubMed  Google Scholar 

  54. Tsung BYS, Zhang M, Mak AFT, Wong MWN (2004) Effectiveness of insoles on plantar pressure redistribution. J Rehab Res Develop 41(6A):767–774

    Article  Google Scholar 

  55. Chen YN, Chang CW, Li CT (2015) Finite element analysis of plantar fascia during walking:a quasi-static simulation. Foot Ankle Int 36(1):90–97. https://doi.org/10.1177/1071100714549189

    Article  PubMed  Google Scholar 

  56. Cheng HK, Lin CL, Wang HW (2008) Finite element analysis of plantar fascia under stretch-The relative contribution of windlass mechanism and Achilles tendon force. J Biomech 41(9):1937–1944

    Article  Google Scholar 

  57. Guo JC, Wang LZ, Mo ZJ, Chen W, Fan YB (2015) Biomechanical analysis of suture locations of the distal plantar fascia in partial foot. Int Orthop 39(12):2373–2380. https://doi.org/10.1007/s00264-015-2889-1

    Article  PubMed  Google Scholar 

  58. Yu J, Cheung JT, Wong DW, Cong Y, Zhang M (2013) Biomechanical simulation of high-heeled shoe donning and walking. J Biomech 46(12):2067–2074. https://doi.org/10.1016/j.jbiomech.2013.05.009

    Article  PubMed  Google Scholar 

  59. Yu J, Cheung JT, Fan Y, Zhang Y, Leung AK, Zhang M (2008) Development of a finite element model of female foot for high-heeled shoe design. Clin Biomech 23(Suppl 1):31–38. https://doi.org/10.1016/j.clinbiomech.2007.09.005

    Article  Google Scholar 

  60. Lemmon D, Shiang TY, Hashmi A, Ulbrecht JS, Cavanagh PR (1997) The effect of insoles in therapeutic footwear: a finite element approach. J Biomech 30(6):615–620

    Article  CAS  Google Scholar 

  61. Erdemir A, Viveiros ML, Ulbrecht JS, Cavanagh PR (2006) An inverse finite-element model of heel-pad indentation. J Biomech 39(7):1279–1286. https://doi.org/10.1016/j.jbiomech.2005.03.007

    Article  PubMed  Google Scholar 

  62. Petre M, Erdemir A, Panoskaltsis VP, Spirka TA, Cavanagh PR (2013) Optimization of nonlinear hyperelastic coefficients for foot tissues using a magnetic resonance imaging deformation experiment. J Biomech Eng 135(6):61001–61012. https://doi.org/10.1115/1.4023695

    Article  PubMed  Google Scholar 

  63. Srinivas CT, Ahmet E, Cavanagh PR (2011) Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech 44(12):2337–2343. https://doi.org/10.1016/j.jbiomech.2011.05.006

    Article  Google Scholar 

  64. Zhang M, Mak AF (1999) In vivo friction properties of human skin. Prosthetics Orthot Int 23(2):135–141

    Article  CAS  Google Scholar 

  65. Cheung JT, Zhang M, Leung AK, Fan Y (2005) Three-dimensional finite element analysis of the foot during standing-a material sensitivity study. J Biomech 38(5):1045–1054. https://doi.org/10.1016/j.jbiomech.2004.05.035

    Article  PubMed  Google Scholar 

  66. Hayashi R, Miyake A, Watanabe S (1988) The functional role of sensory inputs from the foot: stabilizing human standing posture during voluntary and vibration-induced body sway. Neurosci Res 15(3):203–213. https://doi.org/10.1016/0168-0102(88)90049-1

    Article  Google Scholar 

  67. Antonio M, Fabio V, Laura R, Elena P, Leopoldo P (2019) Flexible Juvenile flat foot surgical correction: a comparison between two techniques after ten years’ experience. J Foot Ankle Surg: Official Publication of the American College of Foot And Ankle Surgeons 58(2):203–207. https://doi.org/10.1053/j.jfas.2018.07.013

    Article  Google Scholar 

  68. Mulkerrin P, Mcloughlin RAY, Shaun TO (2019) Accessory navicular syndrome as a cause of foot pain during stroke rehabilitation. Age Ageing 48(1):159–161. https://doi.org/10.1093/ageing/afy165

    Article  PubMed  Google Scholar 

  69. Kim JR, Park CI, Moon YJ, Wang SI, Kwon KS (2014) Concomitant calcaneo-cuboid-cuneiform osteotomies and the modified Kidner procedure for severe flatfoot associated with symptomatic accessory navicular in children and adolescents. J Orthop Surg Res 9:131. https://doi.org/10.1186/s13018-014-0131-2

    Article  PubMed  PubMed Central  Google Scholar 

  70. Elftman H (1934) A cinematic study of the distribution of pressure in the human foot. Anat Rec 59(4):481–491. https://doi.org/10.1002/ar.1090590409

    Article  Google Scholar 

  71. Isis Ferreira E, Vargas Ávila CA, Fabio Mastroeni M (2015) Use of custom insoles for redistributing plantar pressure, decreasing musculoskeletal pain and reducing postural changes in obese adults. Fisioterapia em Movimento 28(2):213–221. https://doi.org/10.1590/0103-5150.028.002.AO01

    Article  Google Scholar 

  72. Almeida JS (2009) Comparison of plantar pressure and musculoskeletal symptoms with the use of custom and prefabricated insoles in the work environment. Rev Bras Fis 13(6):542–548. https://doi.org/10.1590/S1413-35552009005000063

    Article  Google Scholar 

  73. El O, Akcali O, Kosay C, Kaner B, Arslan Y, Sagol E, Soylev S, Iyidogan D, Cinar N, Peker O (2006) Flexible flatfoot and related factors in primary school children: a report of a screening study. Rheumatol Int 26(11):1050–1053. https://doi.org/10.1007/s00296-006-0128-1

    Article  PubMed  Google Scholar 

  74. LeVeau BF, Bernhardt DB (1984) Developmental biomechanics. Effect of forces on the growth, development, and maintenance of the human body. Phys Ther 64(12):1874–1882. https://doi.org/10.1093/ptj/64.12.1874

    Article  CAS  PubMed  Google Scholar 

  75. Dowling A, Steele J, Baur L (2001) Does obesity influence foot structure and plantar pressure patterns in prepubescent children? Int J Obes 25(6):845–852. https://doi.org/10.1038/sj.ijo.0801598

    Article  CAS  Google Scholar 

  76. Morrison SC, Durward BR, Watt GF, Donaldson MD (2007) Anthropometric foot structure of peripubescent children with excessive versus normal body mass: a cross-sectional study. J Am Podiatr Med Assoc 97(5):366–370. https://doi.org/10.7547/0970366

    Article  PubMed  Google Scholar 

  77. Mosca VS (1995) Calcaneal lengthening for valgus deformity of the hindfoot. Results in children who had severe, symptomatic flatfoot and skewfoot. J Bone Joint Surg Am 77(4):500–512

    Article  CAS  Google Scholar 

  78. Wunderlich RE, Cavanagh PR (2001) Gender differences in adult foot shape: implications for shoe design. Med Sci Sports Exerc 33(4):605–611. https://doi.org/10.1097/00005768-200104000-00015

    Article  CAS  PubMed  Google Scholar 

  79. Viegas GV, Dpm F, Facfa OM (2003) Reconstruction of the pediatric flexible planovalgus foot by using an evans calcaneal osteotomy and augmentative medial split tibialis anterior tendon transfer. J Foot Ankle Surg 42(4):199–207

    Article  Google Scholar 

  80. Braito M, Woss M, Henninger B, Schocke M, Liebensteiner M, Huber D, Krismer M, Biedermann R (2016) Comparison of preoperative MRI and intraoperative findings of posterior tibial tendon insufficiency. Springerplus 5(1):1414. https://doi.org/10.1186/s40064-016-3114-4

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kwak YH, Park KB, Park HW, Kim HW (2008) Use of allograft in skeletally immature patients for calcaneal neck lengthening osteotomy. Yonsei Med J 49(1):79–83. https://doi.org/10.3349/ymj.2008.49.1.79

    Article  PubMed  PubMed Central  Google Scholar 

  82. Iammarrone FS, Iammarrone CS, Iadicicco L, D’Angelo G, Ferro L, Vorazzo D (2008) Unfocused shock wave therapy for focal spasticity in the infantile cerebral palsy (ICP): Evaluation of results through computerised gait analysis. Gait Posture 28(suppl 1):32–33. https://doi.org/10.1016/j.gaitpost.2007.12.060

    Article  Google Scholar 

  83. Rome K, Stewart S, Vandal AC, Gow P, McNair P, Dalbeth N (2013) The effects of commercially available footwear on foot pain and disability in people with gout: a pilot study. BMC Musculoskelet Disord 14:278. https://doi.org/10.1186/1471-2474-14-278

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hefti F, Brunner R (1999) Flexible arch of the foot. Orthopade 28(2):159–172. https://doi.org/10.1007/PL00003593

    Article  PubMed  Google Scholar 

  85. Branthwaite H, Chockalingam N, Grogan S, Jones M (2013) Footwear choices made by young women and their potential impact on foot health. J Health Psychol 18(11):1422–1431. https://doi.org/10.1177/1359105312463585

    Article  PubMed  Google Scholar 

  86. Hong WH, Lee YH, Chen HC, Pei YC, Wu CY (2005) Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking. Foot Ankle Int 26(12):1042–1048. https://doi.org/10.1177/107110070502601208

    Article  PubMed  Google Scholar 

  87. Han Y, Duan D, Zhao K, Wang X, Ouyang L, Liu G (2017) Investigation of the relationship between flatfoot and patellar subluxation in adolescents(Article). J Foot Ankle Surg 56(1):15–18. https://doi.org/10.1053/j.jfas.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  88. Jumani MS, Shaikh S, Shah SA (2014) Fused deposition modelling technique for fabrication of custom-made foot orthosis: A cost and benefit analysis. Sci Int (Lahore) 26(5):2571–2576

    Google Scholar 

  89. Dombroski CE, Balsdon ME, Froats A (2014) The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Res Notes 5:443–447

    Article  Google Scholar 

  90. Kendall JC, Bird AR (2014) Foot posture, leg length discrepancy and low back pain—their relationship and clinical management using foot orthoses—an overview. Foot (Edinb) 24(2):75–80

    Article  Google Scholar 

  91. Chuter V, Spink M, Searle A, Ho A (2014) The effectiveness of shoe insoles for the prevention and treatment of low back pain: a systematic review and meta-analysis of randomised controlled trials. BMC Musculoskelet Disord 15:140. https://doi.org/10.1186/1471-2474-15-140

    Article  PubMed  PubMed Central  Google Scholar 

  92. Leal-Junior AG, Díaz CR, Marques C, Pontes MJ, Frizera A (2019) 3D-printed POF insole: Development and applications of a low-cost, highly customizable device for plantar pressure and ground reaction forces monitoring(Article). Opt Laser Technol 116:256–264. https://doi.org/10.1016/j.optlastec.2019.03.035

    Article  CAS  Google Scholar 

  93. Irving DB, Cook JL, Young MA, Menz HB (2007) Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study. BMC Musculoskelet Disord 8:41–48. https://doi.org/10.1186/1471-2474-8-41

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gallagher EJ, Liebman M, Bijur PE (2011) Prospective validation of clinically important changes in pain severity measured on a visual analog scale. Ann Emerg Med 38(6):633–638. https://doi.org/10.1067/mem.2001.118863

    Article  Google Scholar 

  95. Sutton RM, McDonald EL, Shakked RJ, Fuchs D, Raikin SM (2019) Determination of Minimum Clinically Important Difference (MCID) in Visual Analog Scale (VAS) Pain and Foot and Ankle Ability Measure (FAAM) Scores after hallux valgus surgery. Foot Ankle Int 40(6):687–693. https://doi.org/10.1177/1071100719834539

    Article  PubMed  Google Scholar 

  96. Redmond AC, Landorf KB, Keenan AM (2009) Contoured, prefabricated foot orthoses demonstrate comparable mechanical properties to contoured, customised foot orthoses: a plantar pressure study. J Foot Ankle Res 2:20. https://doi.org/10.1186/1757-1146-2-20

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jafarnezhadgero AA, Shad MM, Majlesi M (2017) Effect of foot orthoses on the medial longitudinal arch in children with flexible flatfoot deformity: A three-dimensional moment analysis. Gait Posture 55:75–80. https://doi.org/10.1016/j.gaitpost.2017.04.011

    Article  PubMed  Google Scholar 

  98. Williams AE, Davies S, Graham A, Dagg A, Longrigg K, Lyons C, Bowen C (2011) Guidelines for the management of the foot health problems associated with rheumatoid arthritis. Musculoskeletal Care 9(2):86–92. https://doi.org/10.1002/msc.200

    Article  PubMed  Google Scholar 

  99. Chotel F, Berard J, Raux S (2014) Patellar instability in children and adolescents. Orthop Traumatol Surg Res 100(1 Suppl):S125–S137. https://doi.org/10.1016/j.otsr.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  100. Archer KR, Mackenzie EJ, Castillo RC, Bosse MJ, Group LS (2009) Orthopedic surgeons and physical therapists differ in assessment of need for physical therapy after traumatic lower-extremity injury. Phys Ther 89(12):1337–1349. https://doi.org/10.2522/ptj.20080200

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chang BC, Wang JY, Huang BS, Lin HY, Lee WC (2012) Dynamic impression insole in rheumatoid foot with metatarsal pain. Clin Biomech (Bristol, Avon) 27(2):196–201. https://doi.org/10.1016/j.clinbiomech.2011.08.005

    Article  Google Scholar 

  102. Zhang X, Li B, Hu K, Wan Q, Ding Y, Vanwanseele B (2017) Adding an arch support to a heel lift improves stability and comfort during gait. Gait Posture 58:94–97. https://doi.org/10.1016/j.gaitpost.2017.07.110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J., Wang, L., Fan, Y. (2022). Protective Effect of Insole on Foot Injury. In: Fan, Y., Wang, L. (eds) Biomechanics of Injury and Prevention. Springer, Singapore. https://doi.org/10.1007/978-981-16-4269-2_10

Download citation

Publish with us

Policies and ethics