Skip to main content

Structure–Function of TMEM16 Ion Channels and Lipid Scramblases

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1349))

Abstract

The TMEM16 protein family comprises two novel classes of structurally conserved but functionally distinct membrane transporters that function as Ca2+-dependent Cl channels (CaCCs) or dual functional Ca2+-dependent ion channels and phospholipid scramblases. Extensive functional and structural studies have advanced our understanding of TMEM16 molecular mechanisms and physiological functions. TMEM16A and TMEM16B CaCCs control transepithelial fluid transport, smooth muscle contraction, and neuronal excitability, whereas TMEM16 phospholipid scramblases mediate the flip-flop of phospholipids across the membrane to allow phosphatidylserine externalization, which is essential in a plethora of important processes such as blood coagulation, bone development, and viral and cell fusion. In this chapter, we summarize the major methods in studying TMEM16 ion channels and scramblases and then focus on the current mechanistic understanding of TMEM16 Ca2+- and voltage-dependent channel gating as well as their ion and phospholipid permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    PubMed  PubMed Central  Google Scholar 

  2. Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN et al (2012) TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151:111–122

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Adomaviciene A, Smith KJ, Garnett H, Tammaro P (2013) Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes. J Physiol 591:3487–3505

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Berg J, Yang H, Jan LY (2012) Ca2+-activated Cl- channels at a glance. J Cell Sci 125:1367–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bevers EM, Williamson PL (2016) Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 96:605–645

    CAS  PubMed  Google Scholar 

  6. Brunner JD, Schenck S, Dutzler R (2016) Structural basis for phospholipid scrambling in the TMEM16 family. Curr Opin Struct Biol 39:61–70

    CAS  PubMed  Google Scholar 

  7. Crottes D, Jan LY (2019) The multifaceted role of TMEM16A in cancer. Cell Calcium 82:102050

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Duran C, Hartzell HC (2011) Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin 32:685–692

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Falzone ME, Malvezzi M, Lee BC, Accardi A (2018) Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 150:933–947

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z (2009) Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J Physiol 587:2127–2139

    CAS  PubMed  Google Scholar 

  12. Huang F, Wong X, Jan LY (2012) International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kunzelmann K, Nilius B, Owsianik G, Schreiber R, Ousingsawat J, Sirianant L, Wanitchakool P, Bevers EM, Heemskerk JW (2014) Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch 466:407–414

    CAS  PubMed  Google Scholar 

  14. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh U, Jung J (2016) Cellular functions of TMEM16/anoctamin. Pflugers Arch 468:443–453

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94:419–459

    CAS  PubMed  Google Scholar 

  17. Picollo A, Malvezzi M, Accardi A (2015) TMEM16 proteins: unknown structure and confusing functions. J Mol Biol 427:94–105

    CAS  PubMed  Google Scholar 

  18. Whitlock JM, Hartzell HC (2017) Anoctamins/TMEM16 proteins: chloride channels flirting with lipids and extracellular vesicles. Annu Rev Physiol 79:119–143

    CAS  PubMed  Google Scholar 

  19. Yang H, Jan LY (2016) Chapter 7: TMEM16 Membrane proteins in health and disease. In: Pitt GS (ed) Ion channels in health and disease. Boston, Academic Press, pp 165–197

    Google Scholar 

  20. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, Zhu S, Ball CA, Nielsen TO, Patel R et al (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    CAS  PubMed  Google Scholar 

  22. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    CAS  PubMed  Google Scholar 

  24. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    CAS  PubMed  Google Scholar 

  25. Danahay H, Atherton H, Jones G, Bridges RJ, Poll CT (2002) Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 282:L226–L236

    CAS  PubMed  Google Scholar 

  26. Galietta LJ, Pagesy P, Folli C, Caci E, Romio L, Costes B, Nicolis E, Cabrini G, Goossens M, Ravazzolo R et al (2002) IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol 168:839–845

    CAS  PubMed  Google Scholar 

  27. Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038

    CAS  PubMed  Google Scholar 

  28. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106:11776–11781

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    PubMed  PubMed Central  Google Scholar 

  30. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    CAS  PubMed  Google Scholar 

  31. Castoldi E, Collins PW, Williamson PL, Bevers EM (2011) Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117:4399–4400

    CAS  PubMed  Google Scholar 

  32. Satta N, Toti F, Fressinaud E, Meyer D, Freyssinet JM (1997) Scott syndrome: an inherited defect of the procoagulant activity of platelets. Platelets 8:117–124

    CAS  PubMed  Google Scholar 

  33. Brooks MB, Catalfamo JL, MacNguyen R, Tim D, Fancher S, McCardle JA (2015) A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling. J Thromb Haemost 13:2240–2252

    CAS  PubMed  Google Scholar 

  34. Martins JR, Faria D, Kongsuphol P, Reisch B, Schreiber R, Kunzelmann K (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A 108:18168–18172

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Almaca J, Tian Y, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Juul CA, Grubb S, Poulsen KA, Kyed T, Hashem N, Lambert IH, Larsen EH, Hoffmann EK (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Arch 466:1899–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K (2010) Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimizu T, Iehara T, Sato K, Fujii T, Sakai H, Okada Y (2013) TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am J Physiol Cell Physiol 304:C748–C759

    CAS  PubMed  Google Scholar 

  39. Szteyn K, Schmid E, Nurbaeva MK, Yang W, Munzer P, Kunzelmann K, Lang F, Shumilina E (2012) Expression and functional significance of the Ca(2+)-activated Cl(−) channel ANO6 in dendritic cells. Cell Physiol Biochem 30:1319–1332

    CAS  PubMed  Google Scholar 

  40. Tian Y, Schreiber R, Kunzelmann K (2012) Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci 125:4991–4998

    CAS  PubMed  Google Scholar 

  41. Grubb S, Poulsen KA, Juul CA, Kyed T, Klausen TK, Larsen EH, Hoffmann EK (2013) TMEM16F (Anoctamin 6), an anion channel of delayed Ca(2+) activation. J Gen Physiol 141:585–600

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212

    CAS  PubMed  Google Scholar 

  43. Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AK, Accardi A (2013) Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 4:2367

    PubMed  Google Scholar 

  44. Lee BC, Menon AK, Accardi A (2016) The nhTMEM16 scramblase is also a nonselective ion channel. Biophys J 111:1919–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scudieri P, Caci E, Venturini A, Sondo E, Pianigiani G, Marchetti C, Ravazzolo R, Pagani F, Galietta LJ (2015) Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol 593:3829–3848

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu K, Whitlock JM, Lee K, Ortlund EA, Cui YY, Hartzell HC (2015) Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife 4:e06901

    PubMed  PubMed Central  Google Scholar 

  47. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–406

    CAS  PubMed  Google Scholar 

  48. Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA et al (2019) The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 10:3956

    PubMed  PubMed Central  Google Scholar 

  49. Di Zanni E, Gradogna A, Scholz-Starke J, Boccaccio A (2018) Gain of function of TMEM16E/ANO5 scrambling activity caused by a mutation associated with gnathodiaphyseal dysplasia. Cell Mol Life Sci 75:1657–1670

    PubMed  Google Scholar 

  50. Gyobu S, Miyata H, Ikawa M, Yamazaki D, Takeshima H, Suzuki J, Nagata S (2016) A role of TMEM16E carrying a scrambling domain in sperm motility. Mol Cell Biol 36:645–659

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Whitlock JM, Yu K, Cui YY, Hartzell HC (2018) Anoctamin 5/TMEM16E facilitates muscle precursor cell fusion. J Gen Physiol 150:1498–1509

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arreola J, Melvin JE, Begenisich T (1996) Activation of calcium-dependent chloride channels in rat parotid acinar cells. J Gen Physiol 108:35–47

    CAS  PubMed  Google Scholar 

  53. Kuruma A, Hartzell HC (2000) Bimodal control of a Ca(2+)-activated Cl(−) channel by different Ca(2+) signals. J Gen Physiol 115:59–80

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cruz-Rangel S, De Jesus-Perez JJ, Arechiga-Figueroa IA, Rodriguez-Menchaca AA, Perez-Cornejo P, Hartzell HC, Arreola J (2017) Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J Physiol 595:1515–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Le SC, Jia Z, Chen J, Yang H (2019a) Molecular basis of PIP2-dependent regulation of the Ca(2+)-activated chloride channel TMEM16A. Nat Commun 10:3769

    PubMed  PubMed Central  Google Scholar 

  58. Lim NK, Lam AK, Dutzler R (2016) Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol 148:375–392

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ni YL, Kuan AS, Chen TY (2014) Activation and inhibition of TMEM16A calcium-activated chloride channels. PLoS One 9:e86734

    PubMed  PubMed Central  Google Scholar 

  60. Tien J, Peters CJ, Wong XM, Cheng T, Jan YN, Jan LY, Yang H (2014) A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. Elife 3:e02772

    PubMed Central  Google Scholar 

  61. Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC (2011) Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A 108:8891–8896

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu K, Duran C, Qu Z, Cui YY, Hartzell HC (2012) Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 110:990–999

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cenedese V, Betto G, Celsi F, Cherian OL, Pifferi S, Menini A (2012) The voltage dependence of the TMEM16B/anoctamin2 calcium-activated chloride channel is modified by mutations in the first putative intracellular loop. J Gen Physiol 139:285–294

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pifferi S (2017) Permeation mechanisms in the TMEM16B calcium-activated chloride channels. PLoS One 12:e0169572

    PubMed  PubMed Central  Google Scholar 

  65. Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron 45:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Perez-Cornejo P, De Santiago JA, Arreola J (2004) Permeant anions control gating of calcium-dependent chloride channels. J Membr Biol 198:125–133

    CAS  PubMed  Google Scholar 

  68. Peters CJ, Gilchrist JM, Tien J, Bethel NP, Qi L, Chen T, Wang L, Jan YN, Grabe M, Jan LY (2018) The sixth transmembrane segment is a major gating component of the TMEM16A calcium-activated chloride channel. Neuron 97(1063–1077):e1064

    Google Scholar 

  69. Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, Cheng Y (2019) Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling. Cell Rep 28(567–579):e564

    Google Scholar 

  70. Le T, Jia Z, Le SC, Zhang Y, Chen J, Yang H (2019b) An inner activation gate controls TMEM16F phospholipid scrambling. Nat Commun 10:1846

    PubMed  PubMed Central  Google Scholar 

  71. Nguyen DM, Chen LS, Yu WP, Chen TY (2019) Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase. J Gen Physiol 151:518–531

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ye W, Han TW, He M, Jan YN, Jan LY (2019) Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity. Elife 8

    Google Scholar 

  73. Le T, Le SC, Yang H (2019c) Drosophila subdued is a moonlighting transmembrane protein 16 (TMEM16) that transports ions and phospholipids. J Biol Chem 294(12):4529–4537

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ehlen HW, Chinenkova M, Moser M, Munter HM, Krause Y, Gross S, Brachvogel B, Wuelling M, Kornak U, Vortkamp A (2013) Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res 28:246–259

    CAS  PubMed  Google Scholar 

  75. Fujii T, Sakata A, Nishimura S, Eto K, Nagata S (2015) TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci U S A 112:12800–12805

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Headland SE, Jones HR, Norling LV, Kim A, Souza PR, Corsiero E, Gil CD, Nerviani A, Dell'Accio F, Pitzalis C et al (2015) Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci Transl Med 7:315ra190

    PubMed  PubMed Central  Google Scholar 

  77. Han TW, Ye W, Bethel NP, Zubia M, Kim A, Li KH, Burlingame AL, Grabe M, Jan YN, Jan LY (2019) Chemically induced vesiculation as a platform for studying TMEM16F activity. Proc Natl Acad Sci U S A 116:1309–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Falzone ME, Accardi A (2020) Reconstitution of proteoliposomes for phospholipid scrambling and nonselective channel assays. Methods Mol Biol 2127:207–225

    CAS  PubMed  PubMed Central  Google Scholar 

  79. De Jesus-Perez JJ, Cruz-Rangel S, Espino-Saldana AE, Martinez-Torres A, Qu Z, Hartzell HC, Corral-Fernandez NE, Perez-Cornejo P, Arreola J (2018) Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta Mol Cell Biol Lipids 1863:299–312

    PubMed  Google Scholar 

  80. Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC (2020) Allosteric modulation of alternatively spliced Ca(2+)-activated Cl(−) channels TMEM16A by PI(4,5)P2 and CaMKII. Proc Natl Acad Sci U S A 17(48):30787–30798

    Google Scholar 

  81. Pritchard HA, Leblanc N, Albert AP, Greenwood IA (2014) Inhibitory role of phosphatidylinositol 4,5-bisphosphate on TMEM16A-encoded calcium-activated chloride channels in rat pulmonary artery. Br J Pharmacol 171:4311–4321

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ta CM, Acheson KE, Rorsman NJG, Jongkind RC, Tammaro P (2017) Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels. Br J Pharmacol 174:2984–2999

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tembo M, Wozniak KL, Bainbridge RE, Carlson AE (2019) Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca(2+) are both required to open the Cl(−) channel TMEM16A. J Biol Chem 294:12556–12564

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu K, Jiang T, Cui Y, Tajkhorshid E, Hartzell HC (2019) A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca(2+)-activated Cl(−) channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A 116:19952–19962

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee BC, Khelashvili G, Falzone M, Menon AK, Weinstein H, Accardi A (2018) Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat Commun 9:3251

    PubMed  PubMed Central  Google Scholar 

  86. Watanabe R, Sakuragi T, Noji H, Nagata S (2018) Single-molecule analysis of phospholipid scrambling by TMEM16F. Proc Natl Acad Sci U S A 115:3066–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, Paulino C (2019) Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Elife 8:e44365. https://doi.org/10.7554/eLife.44365

    Article  PubMed  PubMed Central  Google Scholar 

  88. Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM et al (2019) Structural basis of Ca(2+)-dependent activation and lipid transport by a TMEM16 scramblase. Elife 8:e43229. https://doi.org/10.7554/eLife.43229

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kalienkova V, Clerico Mosina V, Bryner L, Oostergetel GT, Dutzler R, Paulino C (2019) Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. Elife 8:e44364

    PubMed  PubMed Central  Google Scholar 

  90. Paulino C, Kalienkova V, Lam AKM, Neldner Y, Dutzler R (2017a) Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552:421–425

    CAS  PubMed  Google Scholar 

  91. Paulino C, Neldner Y, Lam AK, Kalienkova V, Brunner JD, Schenck S, Dutzler R (2017b) Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. Elife 6:e26232

    PubMed  PubMed Central  Google Scholar 

  92. Fallah G, Romer T, Detro-Dassen S, Braam U, Markwardt F, Schmalzing G (2011) TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics 10(M110):004697

    PubMed  Google Scholar 

  93. Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R (2011) Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. J Biol Chem 286:1381–1388

    CAS  PubMed  Google Scholar 

  94. Tien J, Lee HY, Minor DL Jr, Jan YN, Jan LY (2013) Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proc Natl Acad Sci U S A 110:6352–6357

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jeng G, Aggarwal M, Yu WP, Chen TY (2016) Independent activation of distinct pores in dimeric TMEM16A channels. J Gen Physiol 148:393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbuhler K, Ye W, Qi L et al (2017a) Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552:426–429

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang T, Yu K, Hartzell HC, Tajkhorshid E (2017) Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase. Elife 6:e28671

    PubMed  PubMed Central  Google Scholar 

  98. Lam AK, Dutzler R (2018) Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A. Elife 7:e39122. https://doi.org/10.7554/eLife.39122

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nilius B, Prenen J, Voets T, Van den Bremt K, Eggermont J, Droogmans G (1997) Kinetic and pharmacological properties of the calcium-activated chloride-current in macrovascular endothelial cells. Cell Calcium 22:53–63

    CAS  PubMed  Google Scholar 

  100. Peters CJ, Yu H, Tien J, Jan YN, Li M, Jan LY (2015) Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proc Natl Acad Sci U S A 112:3547–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Evans MG, Marty A (1986) Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol 378:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Qu Z, Hartzell HC (2000) Anion permeation in Ca(2+)-activated Cl(-) channels. J Gen Physiol 116:825–844

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Whitlock JM, Hartzell HC (2016) A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch 468:455–473

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pomorski T, Menon AK (2006) Lipid flippases and their biological functions. Cell Mol Life Sci 63:2908–2921

    CAS  PubMed  Google Scholar 

  105. Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23:1350–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bethel NP, Grabe M (2016) Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc Natl Acad Sci U S A 113:14049–14054

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gyobu S, Ishihara K, Suzuki J, Segawa K, Nagata S (2017) Characterization of the scrambling domain of the TMEM16 family. Proc Natl Acad Sci U S A 114:6274–6279

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Menon I, Huber T, Sanyal S, Banerjee S, Barre P, Canis S, Warren JD, Hwa J, Sakmar TP, Menon AK (2011) Opsin is a phospholipid flippase. Curr Biol 21:149–153

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, Weinstein H (2019) Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca(2+)-bound nhTMEM16. Nat Commun 10:4972

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants National Institutes of Health NIH-DP2-GM126898 (to H.Y.) and the American Heart Association Pre-Doctoral Fellowship 19PRE34380456 (to S.C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanghe Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le, S.C., Yang, H. (2021). Structure–Function of TMEM16 Ion Channels and Lipid Scramblases. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_6

Download citation

Publish with us

Policies and ethics