Skip to main content

Advancing Ion Channel Research with Automated Patch Clamp (APC) Electrophysiology Platforms

  • 709 Accesses

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1349)

Abstract

Since its development on the cusp of the new millennium, automated patch clamp (APC) technology has matured over the last two decades. The increased throughput it afforded promised a new paradigm in ion channel recordings: It offered the potential to overcome the time-consuming, low-throughput bottleneck arising from manual patch clamp (MPC) investigations. This chapter highlights the advances in technology, showing how APC platforms have ‘democratised’ ion channel recordings, lowering the technical bar whilst substantially raising throughput. It will describe the background of the seminal first-generation and updates on advances in second-generation platforms. Furthermore, the chapter summarises the advances APC has made in ion channel studies, including finding new tool compounds and medicines. New functionality and applications on APC platforms give ion channel researchers flexible tools to study ion channels with high quality and high throughput.

Keywords

  • Electrophysiology
  • Ion channels
  • Automated patch clamp
  • Manual patch clamp

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-4254-8_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-4254-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

Abbreviations

APC:

Automated patch clamp

CHO:

Chinese hamster ovary

CRO:

Contract research organisation

d.p.:

Data points

HEK293:

Human embryonic kidney 293

hERG:

Human ether-a-go-go-related gene

HTS:

High throughput screen

MPC:

Manual patch clamp

MTS:

Medium throughput screen

References

  1. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch: Eur J Physiol 391:85–100

    CAS  CrossRef  Google Scholar 

  2. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    CAS  PubMed  CrossRef  Google Scholar 

  3. Nurse, P. (2015). Ensuring a successful UK research endeavour: a review of the UK Research Councils

    Google Scholar 

  4. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    CAS  PubMed  CrossRef  Google Scholar 

  5. Milligan CJCJ, Li J, Sukumar P, Majeed Y, Dallas MLML, English A et al (2009) Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nat Protoc 4:244–255

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Priest, B.T., Cerne, R., Krambis, M.J., Schmalhofer, W.A., Wakulchik, M., Wilenkin, B., et al. (2004). Automated electrophysiology assays (Eli Lilly & Company and the National Center for Advancing Translational Sciences)

    Google Scholar 

  7. Terstappen GC, Roncarati R, Dunlop J, Peri R (2010) Screening technologies for ion channel drug discovery. Future Med Chem 2:715–730

    CAS  PubMed  CrossRef  Google Scholar 

  8. Perkel JM (2010) High-throughput ion channel screening: a ‘patch’-work solution. BioTechniques 48:25–29

    CAS  PubMed  CrossRef  Google Scholar 

  9. Bell DC, Dallas ML (2018) Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br J Pharmacol 175:2312–2321

    CAS  PubMed  CrossRef  Google Scholar 

  10. Brüggemann A, Stoelzle S, George M, Behrends JC, Fertig N (2006) Microchip technology for automated and parallel patch-clamp recording. Small 2:840–846

    PubMed  CrossRef  CAS  Google Scholar 

  11. Stoelzle S, Obergrussberger A, Brüggemann A, Haarmann C, George M, Kettenhofen R et al (2011) State-of-the-art automated patch clamp devices: heat activation, action potentials, and high throughput in ion channel screening. Front Pharmacol 2:76

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Bridgland-Taylor MH, Hargreaves AC, Easter A, Orme A, Henthorn DC, Ding M et al (2006) Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks™ HT. J Pharmacol Toxicol Methods 54:189–199

    CAS  PubMed  CrossRef  Google Scholar 

  13. Liu C, Li T, Chen J (2019) Role of high-throughput electrophysiology in drug discovery. Curr Protoc Pharmacol 87:e69

    PubMed  CrossRef  Google Scholar 

  14. McGivern JG, Ding M (2020) Ion channels and relevant drug screening approaches. SLAS Discov 25:413–419

    PubMed  CrossRef  Google Scholar 

  15. Obergrussberger A, Friis S, Brüggemann A, Fertig N (2020) Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Expert Opin Drug Discov:1–5

    Google Scholar 

  16. Gillie DJ, Novick SJ, Donovan BT, Payne LA, Townsend C (2013) Development of a high-throughput electrophysiological assay for the human ether-à-go-go related potassium channel hERG. J Pharmacol Toxicol Methods 67:33–44

    CAS  PubMed  CrossRef  Google Scholar 

  17. Kuryshev YA, Brown AM, Duzic E, Kirsch GE (2014) Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays. Assay Drug Dev Technol 12:110–119

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Obergrussberger A, Brüggemann A, Goetze TA, Rapedius M, Haarmann C, Rinke I et al (2016) Automated patch clamp meets high-throughput screening: 384 cells recorded in parallel on a planar patch clamp module. J Lab Autom 21:779–793

    CAS  PubMed  CrossRef  Google Scholar 

  19. Schupp M, Park SH, Qian B, Yu W (2020) Electrophysiological studies of GABAA receptors using QPatch II, the next generation of automated patch-clamp instruments. Curr Protoc Pharmacol 89:e75

    CAS  PubMed  CrossRef  Google Scholar 

  20. Chambers C, Witton I, Adams C, Marrington L, Kammonen J (2016) High-throughput screening of NaV1.7 modulators using a giga-seal automated patch clamp instrument. Assay Drug Dev Technol 14:93–108

    CAS  PubMed  CrossRef  Google Scholar 

  21. Qian B, Park SH, Yu W (2020) Screening assay protocols targeting the Nav1.7 channel using qube high-throughput automated patch-clamp system. Curr Protoc Pharmacol 89(1):e74

    CAS  PubMed  CrossRef  Google Scholar 

  22. Danker T, Möller C (2014) Early identification of hERG liability in drug discovery programs by automated patch clamp. Front Pharmacol 5:203

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  23. Sorota S, Zhang XS, Margulis M, Tucker K, Priestley T (2005) Characterization of a hERG screen using the IonWorks HT: comparison to a hERG rubidium efflux screen. Assay Drug Dev Technol 3:47–57

    CAS  PubMed  CrossRef  Google Scholar 

  24. Windley MJ, Abi-Gerges N, Fermini B, Hancox JC, Vandenberg JI, Hill AP (2016) Measuring kinetics and potency of hERG block for CiPA. J Pharmacol Toxicol Methods

    Google Scholar 

  25. Becker N, Horváth A, De Boer T, Fabbri A, Grad C, Fertig N et al (2020) Automated dynamic clamp for simulation of IK1 in human induced pluripotent stem cell–derived cardiomyocytes in real time using patchliner dynamite8. Curr Protoc Pharmacol 88:e70

    CAS  PubMed  CrossRef  Google Scholar 

  26. Goversen B, Becker N, Stoelzle-Feix S, Obergrussberger A, Vos MA, van Veen TAB et al (2018) A hybrid model for safety pharmacology on an automated patch clamp platform: using dynamic clamp to join iPSC-derived cardiomyocytes and simulations of Ik1 ion channels in real-time. Front Physiol 8

    Google Scholar 

  27. Guo D, Jenkinson S (2019) Simultaneous assessment of compound activity on cardiac Nav1.5 peak and late currents in an automated patch clamp platform. J Pharmacol Toxicol Methods 99

    Google Scholar 

  28. Sanson C, Schombert B, Filoche-Rommé B, Partiseti M, Bohme GA (2019) Electrophysiological and pharmacological characterization of human inwardly rectifying Kir 2.1 channels on an automated patch-clamp platform. Assay Drug Dev Technol 17:89–99

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Brinkwirth N, Takasuna K, Doi M, Becker N, Obergrussberger A, Friis S et al (2020) Reliable identification of cardiac liability in drug discovery using automated patch clamp: benchmarking best practices and calibration standards for improved proarrhythmic assessment. J Pharmacol Toxicol Methods

    Google Scholar 

  30. Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI (2009) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Mol Neurosci 2:17

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  31. Vasilyev DV, Shan QJ, Lee YT, Soloveva V, Nawoschik SP, Kaftan EJ et al (2009) A novel high-throughput screening assay for HCN channel blocker using membrane potential-sensitive dye and FLIPR. J Biomol Screen 14:1119–1128

    CAS  PubMed  CrossRef  Google Scholar 

  32. Bagal SK, Chapman ML, Marron BE, Prime R, Storer RI, Swain NA (2014) Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett 24:3690–3699

    CAS  PubMed  CrossRef  Google Scholar 

  33. Klement G, Babich O, Larsson O, Lund P-E, Malmberg A, Sandberg L et al (2012) Identification of novel NaV1.7 antagonists using high throughput screening platforms. Comb. Chem High Throughput Screen 15:713–720

    CAS  CrossRef  Google Scholar 

  34. Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP et al (2017) Pharmacologic characterization of AMG8379, a potent and selective small molecule sulfonamide antagonist of the voltage-gated sodium channel NaV1.7. J Pharmacol Exp Ther

    Google Scholar 

  35. Trivedi S, Dekermendjian K, Julien R, Huang J, Lund PE, Krupp J et al (2008) Cellular HTS assays for pharmacological characterization of Na V1.7 modulators. Assay Drug Dev Technol 6:167–179

    CAS  PubMed  CrossRef  Google Scholar 

  36. Xie XS, Van Deusen AL, Vitko I, Babu DA, Davies LA, Huynh N et al (2007) Validation of high throughput screening assays against three subtypes of Cav3 T-type channels using molecular and pharmacologic approaches. Assay Drug Dev Technol 5:191–203

    CAS  PubMed  CrossRef  Google Scholar 

  37. Swensen AM, Herrington J, Bugianesi RM, Dai G, Haedo RJ, Ratliff KS et al (2012) Characterization of the substituted N-triazole oxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2 calcium channels. Mol Pharmacol 81:488–497

    CAS  PubMed  CrossRef  Google Scholar 

  38. Danahay HL, Lilley S, Fox R, Charlton H, Sabater J, Button B et al (2020) TMEM16A potentiation: a novel therapeutic approach for the treatment of cystic fibrosis. Am J Respir Crit Care Med 201:946–954

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Sauter DRP, Sørensen CE, Rapedius M, Brüggemann A, Novak I (2016) pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 1862:1994–2003

    CAS  CrossRef  Google Scholar 

  40. Han B, He K, Cai C, Tang Y, Yang L, Heinemann SH et al (2016) Human EAG channels are directly modulated by PIP 2 as revealed by electrophysiological and optical interference investigations. Sci Rep 6:1–13

    CrossRef  CAS  Google Scholar 

  41. Brinkwirth N, Friis S, Goetze T, Rapedius M, Costantin J, Brüggemann A et al (2017) Investigation of the ion channels TMEM16A and TRPC5 and their modulation by intracellular calcium. Biophys J 112:413a

    CrossRef  Google Scholar 

  42. Papakosta M, Dalle C, Haythornthwaite A, Cao L, Stevens EB, Burgess G et al (2011) The chimeric approach reveals that differences in the TRPV1 pore domain determine species-specific sensitivity to block of heat activation. J Biol Chem 286:39663–39762

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Lei CL, Clerx M, Beattie KA, Melgari D, Hancox JC, Gavaghan DJ et al (2019) Rapid characterization of hERG channel kinetics II: temperature dependence. Biophys J 117:2455–2470

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Guo J, Zhan S, Lees-Miller JP, Teng GQ, Duff HJ (2005) Exaggerated block of hERG (KCNH2) and prolongation of action potential duration by erythromycin at temperatures between 37 °C and 42 °C. Hear Rhythm 2:860–866

    CrossRef  Google Scholar 

  45. Golden AP, Li N, Chen Q, Lee T, Nevill T, Cao X et al (2011) IonFlux: a microfluidic patch clamp system evaluated with human ether-à-go-go related gene channel physiology and pharmacology. Assay Drug Dev Technol 9:608–619

    CAS  PubMed  CrossRef  Google Scholar 

  46. Kauthale RR, Dadarkar SS, Husain R, Karande VV, Gatne MM (2015) Assessment of temperature-induced hERG channel blockade variation by drugs. J Appl Toxicol 35:799–805

    CAS  PubMed  CrossRef  Google Scholar 

  47. Ranjan R, Logette E, Marani M, Herzog M, Tâche V, Scantamburlo E et al (2019) A kinetic map of the homomeric voltage-gated potassium channel (Kv) family. Front Cell Neurosci 13:358

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Chow CY, Chin YK-Y, Walker AA, Guo S, Blomster LV, Ward MJ et al (2020) Venom peptides with dual modulatory activity on the voltage-gated sodium channel Na V 1.1 provide novel leads for development of antiepileptic drugs. ACS Pharmacol Transl Sci 3:119–134

    CAS  PubMed  CrossRef  Google Scholar 

  49. Gonçalves TC, Benoit E, Kurz M, Lucarain L, Fouconnier S, Combemale S et al (2019) From identification to functional characterization of cyriotoxin-1a, an antinociceptive toxin from the spider Cyriopagopus schioedtei. Br J Pharmacol 176:1298–1314

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  50. Israel MR, Dash TS, Bothe SN, Robinson SD, Deuis JR, Craik DJ et al (2020) Characterization of synthetic Tf2 as a NaV1.3 selective pharmacological probe. Biomedicines 8:155

    CAS  PubMed Central  CrossRef  Google Scholar 

  51. Nicolas S, Zoukimian C, Belgium FB, Montnach J, Diochot S, Cuypers E et al (2019) Chemical synthesis, proper folding, nav channel selectivity profile and analgesic properties of the spider peptide phlotoxin 1. Toxins (Basel) 11:367

    CAS  CrossRef  Google Scholar 

  52. Sharma G, Deuis JR, Jia X, Mueller A (2020) Recombinant production, bioconjugation and membrane binding studies of Pn3a, a selective Na V 1. 7 inhibitor. Biochem Pharmacol:114148

    Google Scholar 

  53. Tzakoniati F, Xu H, Li T, Garcia N, Kugel C, Payandeh J et al (2020) Development of photocrosslinking probes based on Huwentoxin-IV to map the site of interaction on Nav1.7. Cell Chem Biol 27:306–313. e4

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J et al (2019) Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 160:1989–2003

    CAS  PubMed  CrossRef  Google Scholar 

  55. Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E et al (2019) Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176:702–715. e14

    CAS  PubMed  CrossRef  Google Scholar 

  56. Zoukimian C, Meudal H, De Waard S, Ouares KA, Nicolas S, Canepari M et al (2019) Synthesis by native chemical ligation and characterization of the scorpion toxin AmmTx3. Bioorganic Med Chem 27:247–253

    CAS  CrossRef  Google Scholar 

  57. Alijevic O, McHugh D, Rufener L, Mazurov A, Hoeng J, Peitsch M (2020) An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human α4β2 and α7 nicotinic acetylcholine receptors. Phytochemistry 170:112187

    CAS  PubMed  CrossRef  Google Scholar 

  58. Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI (2013) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Mol Neurosci 2

    Google Scholar 

  59. Harvey AJ, Avery TD, Schaeffer L, Joseph C, Huff BC, Singh R et al (2019) Discovery of BNC375, a potent, selective, and orally available Type i positive allosteric modulator of α7 nAChRs. ACS Med Chem Lett 10:754–760

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Skarratt KK, Gu BJ, Lovelace MD, Milligan CJ, Stokes L, Glover R et al (2020) A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function. FASEB J 34:3884–3901

    CAS  PubMed  CrossRef  Google Scholar 

  61. Sophocleous RA, Berg T, Finol-Urdaneta RK, Sluyter V, Keshiya S, Bell L et al (2020) Pharmacological and genetic characterisation of the canine P2X4 receptor. Br J Pharmacol 177:2812–2829

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Stead C, Brown A, Adams C, Nickolls SJ, Young G, Kammonen J et al (2016) Identification of positive allosteric modulators of glycine receptors from a high-throughput screen using a fluorescent membrane potential assay. J Biomol Screen 21:1042–1053

    CAS  PubMed  CrossRef  Google Scholar 

  63. Yehia A, Wei H (2020) Studying nicotinic acetylcholine receptors using the IonFlux™ microfluidic-based automated patch-clamp system with continuous perfusion and fast solution exchange. Curr Protoc Pharmacol 88

    Google Scholar 

  64. Dale TJ, Townsend C, Hollands EC, Trezise DJ (2007) Population patch clamp electrophysiology: a breakthrough technology for ion channel screening. Mol BioSyst 3:714–722

    CAS  PubMed  CrossRef  Google Scholar 

  65. Finkel A, Wittel A, Yang N, Handran S, Hughes J, Costantin J (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen 11:488–496

    CAS  PubMed  CrossRef  Google Scholar 

  66. Hammami S, Willumsen NJ, Olsen HL, Morera FJ, Latorre R, Klaerke DA (2009) Cell volume and membrane stretch independently control K + channel activity. J Physiol 587:2225–2231

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  67. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  68. Boddum, K., Skafte-Pedersen, P., Rolland, J.F., and Wilson, S. (2021). Optogenetics and optical tools in automated patch clamping. In: Methods in Molecular Biology.

    Google Scholar 

  69. Obergrussberger A, Goetze TA, Brinkwirth N, Becker N, Friis S, Rapedius M et al (2018) An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: implications for drug discovery. Expert Opin Drug Discov 13:269–277

    CAS  PubMed  CrossRef  Google Scholar 

  70. McNamara HM, Zhang H, Werley CA, Cohen AE (2016) Optically controlled oscillators in an engineered bioelectric tissue. Phys Rev X 6:031001

    Google Scholar 

  71. Zhang H, Reichert E, Cohen AE (2016) Optical electrophysiology for probing function and pharmacology of voltagegated ion channels. Elife:5

    Google Scholar 

  72. Zhang H, Moyer BD, Yu V, McGivern JG, Jarosh M, Werley CA et al (2020) Correlation of optical and automated patch clamp electrophysiology for identification of NaV1.7 inhibitors. SLAS Discov 25:434–446

    CAS  PubMed  CrossRef  Google Scholar 

  73. Becker N, Stoelzle S, Göpel S, Guinot D, Mumm P, Haarmann C et al (2013) Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system. J Pharmacol Toxicol Methods 68:82–87

    CAS  PubMed  CrossRef  Google Scholar 

  74. Li T, Lu G, Chiang EY, Chernov-Rogan T, Grogan JL, Chen J (2017) High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE. PLoS One 12:e0180154

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  75. Ong ST, Bajaj S, Tanner MR, Chang SC, Krishnarjuna B, Ng XR et al (2020) Modulation of lymphocyte potassium channel K V 1.3 by membrane-penetrating, joint-targeting immunomodulatory plant defensin. ACS Pharmacol Transl Sci

    Google Scholar 

  76. Rotordam MG, Fermo E, Becker N, Barcellini W, Brüggemann A, Fertig N et al (2019) A novel gain-of-function mutation of piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica 104:e179–e183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Toh MF, Brooks JM, Strassmaier T, Haedo RJ, Puryear CB, Roth BL et al (2020) Application of high-throughput automated patch-clamp electrophysiology to study voltage-gated ion channel function in primary cortical cultures. SLAS Discov 25:447–457

    CAS  PubMed  CrossRef  Google Scholar 

  78. Haythornthwaite A, Stoelzle S, Hasler A, Kiss A, Mosbacher J, George M et al (2012) Characterizing human ion channels in induced pluripotent stem cell-derived neurons. J Biomol Screen 17:1264–1272

    PubMed  CrossRef  Google Scholar 

  79. Li W, Luo X, Ulbricht Y, Wagner M, Piorkowski C, El-Armouche A et al (2019) Establishment of an automated patch-clamp platform for electrophysiological and pharmacological evaluation of hiPSC-CMs. Stem Cell Res 41:101662

    CAS  PubMed  CrossRef  Google Scholar 

  80. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    CAS  PubMed  CrossRef  Google Scholar 

  81. Zhu W, Li T, Silva JR, Chen J (2020) Conservation and divergence in NaChBac and NaV1.7 pharmacology reveals novel drug interaction mechanisms. Sci Rep 10:10730

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  82. Heyne HO, Baez-Nieto D, Iqbal S, Palmer D, Brunklaus A, Collaborative E et al (2019) Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. BioRxiv:671453

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Alison Obergrussberger (Nanion), Drs. Sandra Wilson and Göran Mattsson (Sophion) and Dr. Ali Yehia (Fluxion) for their help with publications and clarifications. MD acknowledges the support received to carry out ion channel research in both MPC and APC formats from various sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Bell .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests. Since writing this chapter DCB has joined Sophion Biosciences A/S; however, before he joined the manuscript was written and completed as an objective review of the APC field.

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bell, D.C., Dallas, M.L. (2021). Advancing Ion Channel Research with Automated Patch Clamp (APC) Electrophysiology Platforms. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_2

Download citation