Skip to main content

Anatomy and Biomechanics

  • Chapter
  • First Online:
A Strategic Approach to Knee Arthritis Treatment

Abstract

The bony structures of knee joint are composed of femur, tibia, fibula, and patella. The bony structures are connected with surrounding soft tissues, such as ligaments, tendons, and capsular structures. The quadriceps and patella tendon are located in the anterior aspect of the knee joint. In the posteromedial aspect of the knee the medial hamstring tendons are observed. The iliotibial tract and biceps femoris are placed in the posterolateral aspect of the knee joint. The medial collateral ligament is a flat band-like structure attached to the medial epicondyle of the knee and to the medial metaphysis of the proximal tibia. The lateral collateral ligament is a cord like structure connecting the lateral femoral epicondyle to the fibula head. The menisci are a crescent shaped fibrocartilaginous structures placed between the distal femur and the tibial plateau. The cruciate ligaments are intraarticular, extrasynovial structures connecting the femur and the tibia. The knee joint is supplied blood from branches of the femoral and the popliteal artery. The nerve distribution to the knee joint is made by the branches of the femoral nerve, tibial nerve, common peroneal nerve, and obturator nerve. The knee joint is a modified hinge joint and can be moved in 6 directions, but the main movement is a flexion-extension. A combination of rolling and gliding movement of the femur against the tibial articular surface enables a maximum flexion of the knee joint. The tibia is externally rotated about 15 degrees during full extension of the knee joint. This rotational motion is called a screw-home movement. In the patellofemoral joint movement, the patella contacts the trochlea in a 30 degrees flexion, and the contact surface moves proximal as the flexion progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrikoula S, Tokis A, Vasiliadis HS, Georgoulis A. The extensor mechanism of the knee joint: an anatomical study. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):214–20.

    Article  PubMed  Google Scholar 

  2. Lieb FJ, Perry J. Quadriceps function: an anatomical and mechanical study using amputated limbs. J Bone Joint Surg Am. 1968;50(8):1535–48.

    Article  CAS  PubMed  Google Scholar 

  3. Hayes CW, Conway WF. Normal anatomy and magnetic resonance appearance of the knee. Top Magn Reson Imaging. 1993;5(4):207–27.

    Article  CAS  PubMed  Google Scholar 

  4. Conlan T, Garth WP Jr, Lemons JE. Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am. 1993;75(5):682–93.

    Article  CAS  PubMed  Google Scholar 

  5. Hallisey MJ, Doherty N, Bennett WF, Fulkerson JP. Anatomy of the junction of the vastus lateralis tendon and the patella. J Bone Joint Surg Am. 1987;69(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  6. Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am. 1979;61(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  7. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007;89(9):2000–10.

    Article  PubMed  Google Scholar 

  8. Mochizuki T, Akita K, Muneta T, Sato T. Pes anserinus: layered supportive structure on the medial side of the knee. Clin Anat (New York, NY). 2004;17(1):50–4.

    Article  Google Scholar 

  9. Baldwin JL. The anatomy of the medial patellofemoral ligament. Am J Sports Med. 2009;37(12):2355–61.

    Article  PubMed  Google Scholar 

  10. Hughston JC, Eilers AF. The role of the posterior oblique ligament in repairs of acute medial (collateral) ligament tears of the knee. J Bone Joint Surg Am. 1973;55(5):923–40.

    Article  CAS  PubMed  Google Scholar 

  11. Liu F, Yue B, Gadikota HR, Kozanek M, Liu W, Gill TJ, et al. Morphology of the medial collateral ligament of the knee. J Orthop Surg Res. 2010;5:69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beltran J, Matityahu A, Hwang K, Jbara M, Maimon R, Padron M, et al. The distal semimembranosus complex: normal MR anatomy, variants, biomechanics and pathology. Skelet Radiol. 2003;32(8):435–45.

    Article  Google Scholar 

  13. Benninger B, Delamarter T. Distal semimembranosus muscle-tendon-unit review: morphology, accurate terminology, and clinical relevance. Folia Morphol (Warsz). 2013;72(1):1–9.

    Article  Google Scholar 

  14. Seebacher JR, Inglis AE, Marshall JL, Warren RF. The structure of the posterolateral aspect of the knee. J Bone Joint Surg Am. 1982;64(4):536–41.

    Article  CAS  PubMed  Google Scholar 

  15. Terry GC, Hughston JC, Norwood LA. The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med. 1986;14(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  16. Terry GC, LaPrade RF. The biceps femoris muscle complex at the knee. Its anatomy and injury patterns associated with acute anterolateral-anteromedial rotatory instability. Am J Sports Med. 1996;24(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  17. Vieira EL, Vieira EA, da Silva RT, Berlfein PA, Abdalla RJ, Cohen M. An anatomic study of the iliotibial tract. Arthroscopy. 2007;23(3):269–74.

    Article  PubMed  Google Scholar 

  18. Yan J, Takeda S, Fujino K, Tajima G, Hitomi J. Anatomical reconsideration of the lateral collateral ligament in the human knee: anatomical observation and literature review. Surg Sci. 2012;3(10):484.

    Article  Google Scholar 

  19. Stäubli HU, Birrer S. The popliteus tendon and its fascicles at the popliteal hiatus: gross anatomy and functional arthroscopic evaluation with and without anterior cruciate ligament deficiency. Arthroscopy. 1990;6(3):209–20.

    Article  PubMed  Google Scholar 

  20. LaPrade RF, Ly TV, Wentorf FA, Engebretsen L. The posterolateral attachments of the knee: a qualitative and quantitative morphologic analysis of the fibular collateral ligament, popliteus tendon, popliteofibular ligament, and lateral gastrocnemius tendon. Am J Sports Med. 2003;31(6):854–60.

    Article  PubMed  Google Scholar 

  21. LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L. The anatomy of the posterior aspect of the knee. An anatomic study. J Bone Joint Surg Am. 2007;89(4):758–64.

    Article  PubMed  Google Scholar 

  22. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res. 1975;106:216–31.

    Article  Google Scholar 

  23. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(10):982–92.

    Article  PubMed  Google Scholar 

  24. Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H, et al. Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy. 2010;26(9 Suppl):S13–20.

    Article  PubMed  Google Scholar 

  25. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3143–50.

    Article  PubMed  Google Scholar 

  26. Kawarai Y, Nakamura J, Suzuki T, Hagiwara S, Miura M, Ohtori S. Anatomical features of the descending genicular artery to facilitate surgical exposure for the subvastus approach-a cadaveric study. J Arthroplast. 2018;33(8):2647–51.

    Article  Google Scholar 

  27. Salaria H, Atkinson R. Anatomic study of the middle genicular artery. J Orthop Surg (Hong Kong). 2008;16(1):47–9.

    Article  CAS  Google Scholar 

  28. Lazaro LE, Cross MB, Lorich DG. Vascular anatomy of the patella: implications for total knee arthroplasty surgical approaches. Knee. 2014;21(3):655–60.

    Article  PubMed  Google Scholar 

  29. Horner G, Dellon AL. Innervation of the human knee joint and implications for surgery. Clin Orthop Relat Res. 1994;301:221–6.

    Article  Google Scholar 

  30. Tran J, Peng PW, Lam K, Baig E, Agur AM, Gofeld M. Anatomical study of the innervation of anterior knee joint capsule: implication for image-guided intervention. Reg Anesth Pain Med. 2018;43(4):407–14.

    Article  PubMed  Google Scholar 

  31. Dunaway DJ, Steensen RN, Wiand W, Dopirak RM. The sartorial branch of the saphenous nerve: its anatomy at the joint line of the knee. Arthroscopy. 2005;21(5):547–51.

    Article  PubMed  Google Scholar 

  32. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.

    Article  CAS  PubMed  Google Scholar 

  33. Herrington L, Nester C. Q-angle undervalued? The relationship between Q-angle and medio-lateral position of the patella. Clin Biomech. 2004;19(10):1070–3.

    Article  Google Scholar 

  34. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.

    Article  Google Scholar 

  35. Lee E, Youngbok J, Teckjin A. Radiographic analysis of the axial alignment of the lower extremity. Knee Surg Relat Res. 1989;1(2):140–4.

    Google Scholar 

  36. Luo C-F. Reference axes for reconstruction of the knee. Knee. 2004;11(4):251–7.

    Article  PubMed  Google Scholar 

  37. Yoshioka Y, Siu D, Cooke T. The anatomy and functional axes of the femur. J Bone Joint Surg Am. 1987;69(6):873–80.

    Article  CAS  PubMed  Google Scholar 

  38. Iwasaki K, Inoue M, Kasahara Y, Tsukuda K, Kawahara H, Yokota I, et al. Inclination of Blumensaat’s line influences on the accuracy of the quadrant method in evaluation for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019:1–9.

    Google Scholar 

  39. de Boer JJ, Blankevoort L, Kingma I, Vorster W. In vitro study of inter-individual variation in posterior slope in the knee joint. Clin Biomech. 2009;24(6):488–92.

    Article  Google Scholar 

  40. van der Linden-van der Zwaag HMJ, Valstar ER, van der Molen AJ, Nelissen RGHH. Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg. 2008;13(4):200–6.

    Article  PubMed  Google Scholar 

  41. Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M. What really happens during the Lachman test? A dynamic MRI analysis of tibiofemoral motion. Am J Sports Med. 2004;32(2):369–75.

    Article  PubMed  Google Scholar 

  42. Smith PN, Refshauge KM, Scarvell JM. Development of the concepts of knee kinematics. Arch Phys Med Rehabil. 2003;84(12):1895–902.

    Article  PubMed  Google Scholar 

  43. Kim HY, Kim KJ, Yang DS, Jeung SW, Choi HG, Choy WS. Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis. Clin Orthop Surg. 2015;7(3):303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lengsfeld M, Ahlers J, Ritter G. Kinematics of the patellofemoral joint. Arch Orthop Trauma Surg. 1990;109(5):280–3.

    Article  CAS  PubMed  Google Scholar 

  45. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  46. Seering WP, Piziali RL, Nagel DA, Schurman DJ. The function of the primary ligaments of the knee in varus-valgus and axial rotation. J Biomech. 1980;13(9):785–94.

    Article  CAS  PubMed  Google Scholar 

  47. Grood E, Noyes F, Butler D, Suntay W. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am. 1981;63(8):1257–69.

    Article  CAS  PubMed  Google Scholar 

  48. Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am. 1984;66(5):715–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Suk Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, SS., Lee, GH., Seo, KJ. (2021). Anatomy and Biomechanics. In: Seo, SS. (eds) A Strategic Approach to Knee Arthritis Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-16-4217-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4217-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4216-6

  • Online ISBN: 978-981-16-4217-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics