Skip to main content

Appendix

  • Chapter
  • First Online:
Vesiculation and Crystallization of Magma

Part of the book series: Advances in Volcanology ((VOLCAN))

  • 577 Accesses

Abstract

In this chapter as appendix, some fundamental knowledge and concepts, derivation of equations, material properties related to magmas, and practical methods of textural observation are briefly summarized for reader’s convenience. For more comprehensive understanding, readers will find the helpful illustration in cited articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For chemical potential \(\mu \), see Box in Sect. 2.5.1.

  2. 2.

    A special combination between an intensive variable and an extensive variable whose product (the intensive variable) \(\times \) (the extensive variable) makes one with the unit of energy. In particular, \(T \times S\), \(P \times V\), and \(\mu \times N\). Memorizing these combinations helps you manipulate thermodynamic equations.

  3. 3.

    Specifically, the total sum of the number of molecules contained in bubbles of all size is equal to the concentration; however, in the case where the degree of supersaturation is not so large, the approximation described in the text can be used.

  4. 4.

    Furthermore, the integrand other than the exponential part, \(R^{2}\), can be moved outside the integral by representing the value at \(R_\mathrm{C}\), which gives the local maximum value. The integral In can then be written as follows:

    $$\begin{aligned} In= & \frac{8 \pi R_\mathrm{C} \exp \left( \displaystyle \frac{ 4 \pi \gamma \left( R_\mathrm{C} \right) ^{2} }{3 k_\mathrm{B} T} \right) }{ v_\mathrm{G} D C^{2}} \int _{0}^{\infty } \exp \left( \frac{ \displaystyle \frac{1}{2} \displaystyle \frac{d^{2} { \Delta \mathcal{F}}}{dR^{2}} (R -R_\mathrm{C} )^{2} }{k_\mathrm{B} T} \right) dR \end{aligned}$$
    (11.36)

    Next, using the change of variables \(R_\mathrm{C} x = R -R_\mathrm{C}\) yields \(R: 0 \rightarrow \infty \), \(x: -1 \rightarrow \infty \). Moreover, because \(dR = R_\mathrm{C} dx\) holds, the integral part of Eq. (11.36) becomes

    $$\begin{aligned} R_\mathrm{C} \int _{-1}^{\infty } \exp \left( -a x^{2} \right) dx \approx R_\mathrm{C} \int _{- \infty }^{\infty } \exp \left( -a x^{2} \right) dx \end{aligned}$$
    (11.37)

    where

    $$\begin{aligned} a= \frac{1}{2} \left| \frac{d^{2} \mathcal{W}}{ d R^{2}} \right| \frac{(R_\mathrm{C})^{2} }{k_\mathrm{B} T} = \frac{4 \pi \gamma (R_\mathrm{C})^{2}}{k_\mathrm{B} T} = \pi (Z R_\mathrm{C})^{2} \end{aligned}$$
    (11.38)

    The integral (11.37) then becomes \(R_\mathrm{C} \sqrt{\pi / a}= \Gamma (1/2) R_\mathrm{C} a^{-1/2}\) = \(Z^{-1}\) using the Gaussian integral.   Here, \(\Gamma \) is the Gamma function.

  5. 5.

    The integral whose integrand is the Gaussian function \(e^{-x^2}\) is known as the Gaussian integral, and the integral from \(- \infty \) to \(\infty \) becomes \(\sqrt{\pi }\). That is,

    $$\begin{aligned} \int _{- \infty }^{\infty } \exp \left( - x^{2} \right) dx = \sqrt{\pi } \end{aligned}$$
    (11.39)

    The integral (11.37) then becomes \(\sqrt{\pi /a}\) by change of variables \(y=a^{1/2}x\).

  6. 6.

    Strictly, the modulus of elasticity is distinguished between the bulk (volumetric) modulus \(M^{*}_\mathrm{v}\) and the shear modulus \(M^{*}_\mathrm{s}\) and the viscosity coefficient is then distinguished between the volumetric viscosity \(\eta ^{*}_\mathrm{v}\) and the shear viscosity \(\eta ^{*}_\mathrm{s}\), which are expressed as follows:       

    $$\begin{aligned} M^{*}&{}={}&M^{*}_\mathrm{v} + \frac{4}{3} M^{*}_\mathrm{s} \end{aligned}$$
    (11.48)
    $$\begin{aligned} \eta ^{*}= & {} \eta ^{*}_\mathrm{v} + \frac{4}{3} \eta ^{*}_\mathrm{s} \end{aligned}$$
    (11.49)

    However, they are not distinguished here.

  7. 7.

    Although this expression is used often, the direction of stress is positive in the compression direction. If this expression is incorporated in the equation of motion, the expression should follow the direction of the common coordinate system and should be \(\sigma \) = \(- k_\mathrm{E} \epsilon _{1} \) = \(- \eta \dot{\epsilon }_{2}\).

References

  • Bagdassarov N, Dorfman A, Dingwell D (2000) Effect of alkalis, phosphorus, andwater on the surface tension of haplogranite melt. Am Mineral 85:33–40

    Article  Google Scholar 

  • Baker DR (1991) Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves. Contrib Mineral Petrol 106:462–473

    Article  Google Scholar 

  • Baker DR (1992) Tracer diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts. Geochim Cosmochim Acta 56:617–631

    Article  Google Scholar 

  • Beherns H, Zhang Y, Xu Z (2004) H\(_{2}\)O diffusion in dacitic and andesitic melts. Geochim Cosmochim Acta 68:5139–5150

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. 2nd edn, Oxford University Publications

    Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II, Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • DeHoff RT, Rhines FN (eds) (1968) Quantitative microscopy. McGraw-Hill, New York

    Google Scholar 

  • Delaney JR, Karsten JL (1981) Ion microprobe studies of water in silicate melts: concentration-dependent water diffusion in obsidian. Earth Planet Sci Lett 52:191–202

    Article  Google Scholar 

  • Dingwell DB, Knoche R, Webb SL, Pichavant M (1992) The effect of B\(_2\)O\(_3\) on the viscosity of haplogranitic liquids. Am Mineral 77:457–461

    Google Scholar 

  • Fiege A, Holtz F, Cichy SB (2014) Bubble formation during decompression of andesitic melts. Am Mineral 99(5–6):1052–1062

    Article  Google Scholar 

  • Gardner JE, Hajimirza S, Webster JD, Gonnermann HM (2018) The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts. Geochim Cosmochim Acta 226:174–181

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell D (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Google Scholar 

  • Guggenheim EA (1950) Thermodynamics. North Holland Publ. Co., Amsterdam, p 36

    Google Scholar 

  • Higgins M (2010) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, p 276

    Google Scholar 

  • Hofmann AW (1980) Diffusion in natural silicate melts: a critical review. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, NJ, pp 385–418

    Chapter  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71(2):403–416

    Article  Google Scholar 

  • Joseph DD, Riccius O, Arney M (1986) Shear-wave speeds and elastic moduli for different liquids. Part 2. Exp J Fluid Mech 171:309–338

    Article  Google Scholar 

  • Karsten JL, Holloway JR, Delaney JR (1982) Ion microprobe studies of water in silicate melts: temperature-dependent water diffusion in obsidian. Earth Planet Sci Lett 59:420–428

    Article  Google Scholar 

  • Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York

    Google Scholar 

  • Liang Y, Richter FM, Davis AM, Watson EB (1996) Diffusion in silicate melts: I. Self diffusion in Ca-Al\(_{2}\)O\(_{3}\)-SiO\(_{2}\) at 1500 \(^{\circ }\)C and 1 GPa. Geochim Cosmochim Acta 60:4353–4367

    Article  Google Scholar 

  • Liang Y, Richter FM, Watson EB (1996) Diffusion in silicate melts: II. Multicomponent diffusion in Ca-Al\(_{2}\)O\(_{3}\)-SiO\(_{2}\) at 1500\(^{\circ }\)C and 1 GPa. Geochim Cosmochim Acta 60:5021–5035

    Article  Google Scholar 

  • Liang Y, Richter FM, Chmberlin L (1997) Diffusion in silicate melts: III. Emprical models for multicomponent diffusion. Geochim Cosmochim Acta 61:5295–5312

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2004) H\(_{2}\)O diffusion in dacitic melts. Chem Geol 209:327–340

    Google Scholar 

  • Mangan MT, Sisson TW (2005) Evolution of melt-vapor surface tension in silicic volcanic systems: experiments with hydrous melts. J Geophys Res 110:B01202. https://doi.org/10.1029/2004JB00321523-36

  • Murase T, McBirney A (1973) Properties of some common igneous rocks and their melts at high temperature. Geol Soc Am Bull 84:3563–3592

    Article  Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts (Developments in Geochemistry 4), Elsevier Science, p 354

    Google Scholar 

  • Okumura S, Nakashima S (2005) Water diffusion in basaltic to dacitic glasses. Chem Geol 227:70–82

    Article  Google Scholar 

  • Ono S (1980) Hyomenchyoryoku (Surface tension), Physics One Point series 9, Kyoritsu Press. (in Japanese)

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids; an empirical method of predition. Am J Sci 272:870–893

    Article  Google Scholar 

  • Shaw H (1974) Diffusion of H\(_{2}\)O in granitic liquids: part I. Experimental data; part II. Mass transfer in magma chambers, in geochemical transport and kinetics. Carnegie I Washington 634:139–170

    Google Scholar 

  • Takeuchi S (2016) Pre-eruptive magma viscosity and a simplified estimating method. Bull Earthq Res Inst Univ Tokyo 91(3):55–63 (in Japanese with English abstract)

    Google Scholar 

  • Taniguchi M (2001) Maguma kagakuheno shotai (Introduction to magma science) Shokabo, p 179. (in Japanese)

    Google Scholar 

  • Taniguchi H (1988) Surface tension of melts in the system CaMg-Si\(_{2}\)O\(_{6}\)-CaAl\(_{2}\)Si\(_{2}\)O\(_{8}\) and its structural significance. Contrib Mineral Petrol 100:484–489

    Article  Google Scholar 

  • Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100:1913–1931

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Underwood EE (1972) The mathematical foundations of quantitative stereology. In: Stereology and quantitative metallography, ASTM Int

    Google Scholar 

  • Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and alumino-silicates. Geochim Cosmochim Acta 46:1061–1072

    Article  Google Scholar 

  • Wada Y (1981) Makuronakei to tokeihousoku (Stastical laws and macroscopic system), Sangyo Press, p 176. (in Japanese)

    Google Scholar 

  • Walker D, Mullins O Jr (1981) Surface tension of natural silicate melts from 1200\(^\circ \)C - 1500\(^\circ \)C and implication for melt structure. Contrib Mineral Petrol 76:455–462

    Article  Google Scholar 

  • Watson EB (1991) Diffusion of dissolved CO\(_2\) and Cl in hydrous silicic to intermediate magmas. Geochim Cosmochim Acta 55(7):1897–1902

    Article  Google Scholar 

  • Webb SL (1992) Low-frequency shear and structure relaxation in rhyolitic melt. Phys Chem Minerals 119:240–245

    Google Scholar 

  • Yamada K, Tanaka H, Nakazawa K, Emori H (2005) A new theory of bubble formation in magma. J Geophys Res 110:B02203. https://doi.org/10.1029/2004JB003113

    Article  Google Scholar 

  • Zhang Y, Behrens H (2000) H\(_2\)O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–262

    Article  Google Scholar 

  • Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351:306–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Toramaru .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toramaru, A. (2022). Appendix. In: Vesiculation and Crystallization of Magma. Advances in Volcanology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4209-8_11

Download citation

Publish with us

Policies and ethics