Skip to main content

Architectures of Nucleolipid Assemblies and Their Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Abstract

The ability of nucleobases, nucleosides, nucleotides and their derivatives to support supramolecular interactions has enabled the construction of a variety of architectures. In particular, nucleolipid hybrids have gained significant interest as they serve as excellent scaffolds for the bottom-up generation of hierarchical assemblies with wide biomedical and material applications. In this chapter, we provided a detailed discussion on the recent advances in the design and applications of nucleolipid assemblies. First, we discuss various design approaches in synthesizing nucleolipid supramolecular synthons and the various self-assembled architectures they form. In the second part, recent applications of nucleolipid assemblies are reviewed in detail. Emphasis is laid on assemblies that can be used as delivery tools, injectable gels, tissue engineering scaffolds, sensors and environment remedial systems. Easy synthesis, ability to tune the assembling process and useful applications of the nucleolipid architectures discussed in this chapter underscore the high potential of nucleolipid assemblies in the real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  2. Saccà B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51(1):58–66

    Article  CAS  Google Scholar 

  3. Chakraborty K, Veetil AT, Jaffrey SR, Krishnan Y (2016) Nucleic acid-based nanodevices in biological imaging. Annu Rev Biochem 85:349–373

    Article  CAS  Google Scholar 

  4. Tapio K, Bald I (2020) The potential of DNA origami to build multifunctional materials. Multifunct Mater 3(3):032001

    Article  CAS  Google Scholar 

  5. Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W (2020) Lipid–oligonucleotide conjugates for bioapplications. Natl Sci Rev 7(12):1933–1953

    Article  CAS  Google Scholar 

  6. Halley PD, Patton RA, Chowdhury A, Byrd JC, Castro CE (2019) Low-cost, simple, and scalable self-assembly of DNA origami nanostructures. Nano Res 12:1207–1215

    Article  CAS  Google Scholar 

  7. Sivakova S, Rowan SJ (2005) Nucleobases as supramolecular motifs. Chem Soc Rev 34:9–21

    Article  CAS  Google Scholar 

  8. Peters GM, Davis JT (2016) Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem Soc Rev 45(11):3188–3206

    Article  CAS  Google Scholar 

  9. Rosemeyer H (2005) Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials. Chem Biodivers 2(8):977–1063

    Article  CAS  Google Scholar 

  10. Allian V, Bourgauz C, Couvreur P (2012) Self-assembled nucleolipids: from supra-molecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res 40(5):1891–1903

    Article  CAS  Google Scholar 

  11. Gissot A, Camplo M, Grinstaff MW, Barthélémy P (2008) Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org Biomol Chem 6(8):1324–1333

    Article  CAS  Google Scholar 

  12. Latxague L, Dalila M-J, Patwa A, Ziane S, Chassande O, Godeau G, Barthélémy P (2012) Glycoside nucleoside lipids (GNLs): an intrusion into the glycolipid’s world. C R Chimie 15(1):29–36

    Article  CAS  Google Scholar 

  13. Baillet J, Desvergnes V, Hamoud A, Latxague L, Barthélémy P (2018) Lipid and nucleic acid chemistries: combining the best of both worlds to construct advanced biomaterials. Adv Mater 30(11):1705078

    Article  CAS  Google Scholar 

  14. Pu F, Ren J, Qu X (2018) Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 47(4):1285–1306

    Article  CAS  Google Scholar 

  15. Chen M, Lin W, Hong L, Ji N, Zhao H (2019) The development and lifetime stability improvement of guanosine-based supramolecular hydrogels through optimized structure. Biomed Res Int 2019:1–18

    Google Scholar 

  16. Barthélémy P (2009) Nucleoside-based lipids at work: from supramolecular assemblies to biological applications. C R Chime 12(1–2):171–179

    Article  CAS  Google Scholar 

  17. Dias E, Battiste JL, Williamson JR (1994) Chemical probe for glycosidic conformation in telomeric DNAs. J Am Chem Soc 116(10):4479–4480

    Article  CAS  Google Scholar 

  18. Berti D, Montis C, Baglioni P (2011) Self-assembly of designer biosurfactants. Soft Matter 7(16):7150–7158

    Article  CAS  Google Scholar 

  19. Barthélémy P, Prata CA, Filocamo SF, Immoos CE, Maynor BW, Hashmi SA, Lee SJ, Grinstaff MW (2005) Supramolecular assemblies of DNA with neutral nucleoside amphiphiles. Chem Commun 10:1261–1263

    Article  CAS  Google Scholar 

  20. Mulet X, Kaasgaard T, Conn CE, Waddington LJ, Kennedy DF, Weerawardena A, Drummond CJ (2010) Nanostructured nonionic thymidine nucleolipid self-assembly materials. Langmuir 26(23):18415–18423

    Article  CAS  Google Scholar 

  21. Nuthanakanti A, Srivatsan SG (2017) Surface-tuned and metal-ion-responsive supramolecular gels based on nucleolipids. ACS Appl Mater Interfaces 9(27):22864–22874

    Article  CAS  Google Scholar 

  22. Nuthanakanti A, Walunj MB, Arun T, Badiger MV, Srivatsan SG (2019) Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. Nanoscale 11(24):11956–11966

    Article  CAS  Google Scholar 

  23. Nuthanakanti A, Srivatsan SG (2020) Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. Nanoscale Adv 2(9):4161–4171

    Article  CAS  Google Scholar 

  24. Yun YJ, Park SM, Kim BH (2003) Novel thymidine-based organogelators and their gelation behaviours. Chem Commun 2:254–255

    Article  CAS  Google Scholar 

  25. Nuthanakanti A (2019) Cytidine and ribothymidine nucleolipids synthesis, organogelation, and selective anion and metal ion responsiveness. New J Chem 43(34):13447–13456

    Article  CAS  Google Scholar 

  26. Köstler K, Werz E, Malecki E, Montilla-Martinez M, Rosemeyer H (2013) Nucleoterpenes of thymidine and 2′-deoxyinosine: synthons for a biomimetic lipophilization of oligonucleotides. Chem Biodivers 10(1):39–61

    Article  CAS  Google Scholar 

  27. Werz E, Viere R, Gassmann G, Korneev S, Malecki E, Rosemeyer H (2013) Synthesis of thymidine, uridine, and 5-methyluridine nucleolipids: tools for a tuned lipophilization of oligonucleotides. Helv Chim Acta 96(5):872–888

    Article  CAS  Google Scholar 

  28. Lepeltier E, Bourgaux C, Rosilio V, Poupaert JH, Meneau F, Zouhiri F, Lepêtre-Mouelhi S, Desmaële D, Couvreur P (2013) Self-assembly of squalene-based nucleolipids: relating the chemical structure of the bioconjugates to the architecture of the nanoparticles. Langmuir 29(48):14795–14803

    Article  CAS  Google Scholar 

  29. Losensky L, Goldenbogen B, Holland G, Laue M, Petran A, Liebscher J, Scheidt HA, Vogel A, Huster D, Klipp E, Arbuzova A (2016) Micro- and nano-tubules built from loosely and tightly rolled up thin sheets. Phys Chem Chem Phys 18(2):1292–1301

    Article  CAS  Google Scholar 

  30. Pescador P, Brodersen N, Scheidt HA, Loew M, Holland G, Bannert N, Liebscher J, Herrmann A, Huster D, Arbuzova A (2010) Microtubes self-assembled from a cholesterol-modified nucleoside. Chem Commun 46(29):5358–5360

    Article  CAS  Google Scholar 

  31. Snip E, Koumoto K, Shinkai S (2002) Gel formation properties of a uracil-appended cholesterol gelator and cooperative effects of the complementary nucleobases. Tetrahedron 58(43):8863–8873

    Article  CAS  Google Scholar 

  32. Davis JT, Spada GP (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36(2):296–313

    Article  CAS  Google Scholar 

  33. Bhattacharyya T, Saha P, Dash J (2018) Guanosine-derived supramolecular hydrogels: recent developments and future opportunities. ACS Omega 3(2):2230–2241

    Article  CAS  Google Scholar 

  34. Stefan L, Monchaud D (2019) Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem 3:650–668

    Article  Google Scholar 

  35. Wang X, Zhou L, Wang H, Luo Q, Xu J, Liu J (2011) Reversible organogels triggered by dynamic K+ binding and release. J Colloid Interface Sci 353(2):412–419

    Article  CAS  Google Scholar 

  36. Meng L, Liu K, Mo S, Mao Y, Yi T (2013) From G-quartets to G-ribbon gel by concentration and sonication control. Org Biomol Chem 11(9):1525–1532

    Article  CAS  Google Scholar 

  37. Kaucher MS, Harrell WA, Davis JT (2006) A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. J Am Chem Soc 128(1):38–39

    Article  CAS  Google Scholar 

  38. Debnath M, Chakraborty S, Kumar YP, Chaudhuri R, Jana B, Dash J (2020) Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K+-ion across biological membranes. Nat Commun 11(1):469

    Article  CAS  Google Scholar 

  39. Simeone L, Milano D, De Napoli L, Irace C, Di Pascale A, Boccalon M, Tecilla P, Montesarchio D (2011) Design, synthesis and characterisation of guanosine-based amphiphiles. Chem Eur J 17(49):13854–13865

    Article  CAS  Google Scholar 

  40. Das RN, Kumar YP, Kumar SA, Schütte OM, Steinem C, Dash J (2018) Self-assembly of a guanosine derivative to form nanostructures and transmembrane channels. Chem Eur J 24(16):4002–4005

    Article  CAS  Google Scholar 

  41. Berger O, Adler-Abramovich L, Levy-Sakin M, Grunwald A, Liebes-Peer Y, Bachar M, Buzhansky L, Mossou E, Forsyth VT, Schwartz T, Ebenstein Y, Frolow F, Shimon LJW, Patolsky F, Gazit E (2015) Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing. Nat Nanotechnol 10(4):353–360

    Article  CAS  Google Scholar 

  42. Basavalingappa V, Bera S, Xue B, Azuri I, Tang Y, Tao K, Shimon LJW, Sawaya MR, Kolusheva S, Eisenberg DS, Kronik L, Cao Y, Wei G, Gazit E (2019) Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat Commun 10:5256

    Article  CAS  Google Scholar 

  43. Du X, Zhou J, Li X, Xu B (2017) Self-assembly of nucleopeptides to interact with DNAs. Interface Focus 7:20160116

    Article  Google Scholar 

  44. Wang H, Feng Z, Qin Y, Wang J, Xu B (2018) Nucleopeptide assemblies selectively sequester ATP in cancer cells to increase the efficacy of doxorubicin. Angew Chem Int Ed 57(18):4931–4935

    Article  CAS  Google Scholar 

  45. Chabaud P, Camplo M, Payet D, Serin G, Moreau L, Barthélémy P, Grinstaff MW (2006) Cationic nucleoside lipids for gene delivery. Bioconjug Chem 17(2):466–472

    Article  CAS  Google Scholar 

  46. Luvino D, Khiati S, Oumzil K, Rocchi P, Camplo M, Barthélémy P (2013) Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles. J Control Release 172(3):954–961

    Article  CAS  Google Scholar 

  47. Yang HW, Yi JW, Bang E-K, Jeon EM, Kim BH (2011) Cationic nucleolipids as efficient siRNA carriers. Org Biomol Chem 9(1):291–296

    Article  CAS  Google Scholar 

  48. Patil SP, Yi JW, Bang E-K, Jeon EM, Ki BH (2011) Synthesis and efficient siRNA delivery of polyamine-conjugated cationic nucleoside lipids. Med Chem Commun 2(6):505–508

    Article  CAS  Google Scholar 

  49. Khiati S, Pierre N, Andriamanarivo S, Grinstaff MW, Arazam N, Nallet F, Navailles L, Barthélémy P (2009) Anionic nucleotide-lipids for in vitro DNA transfection. Bioconjug Chem 20(9):1765–1772

    Article  CAS  Google Scholar 

  50. Khiati S, Luvino D, Oumzil K, Chauffert B, Camplo M, Barthélémy P (2011) Nucleoside–lipid-based nanoparticles for cisplatin delivery. ACS Nano 5(11):8649–8655

    Article  CAS  Google Scholar 

  51. Ramin MA, Sindhu KR, Appavoo A, Oumzil K, Grinstaff MW, Chassande O, Barthélémy P (2017) Cation tuning of supramolecular gel properties: a new paradigm for sustained drug delivery. Adv Mater 29(13):1605227

    Article  CAS  Google Scholar 

  52. Alies B, Ouelhazi MA, Patwa A, Verget J, Navailles L, Desvergnes V, Barthélémy P (2018) Cytidine- and guanosine-based nucleotide–lipids. Org Biomol Chem 16(26):4888–4894

    Article  CAS  Google Scholar 

  53. Tonelli G, Oumzil K, Nallet F, Gaillard C, Navailles L, Barthélémy P (2013) Amino acid-nucleotide-lipids: effect of amino acid on the self-assembly properties. Langmuir 29(18):5547–5555

    Article  CAS  Google Scholar 

  54. Pan D, Tang C, Fan X, Li Y, Yang X, Jin H, Guan Z, Yang Z, Zhang L (2013) Thymidine-based amphiphiles and their bonding to DNA. New J Chem 37(4):1122–1127

    Article  CAS  Google Scholar 

  55. Pan D, Sun J, Jin H, Li Y, Li L, Wu Y, Zhang L, Yang Z (2015) Supramolecular assemblies of novel aminonucleoside phospholipids and their bonding to nucleic acids. Chem Commun 51(3):469–472

    Article  CAS  Google Scholar 

  56. Godeau G, Barthélémy P (2009) Glycosyl-nucleoside lipids as low-molecular-weight gelators. Langmuir 25(15):8447–8450

    Article  CAS  Google Scholar 

  57. Latxague L, Ziane S, Chassande O, Patwa A, Dalila M-J, Barthélémy P (2011) Glycosylated nucleoside lipid promotes the liposome internalization in stem cells. Chem Commun 47:12598–12600

    Article  CAS  Google Scholar 

  58. Latxague L, Patwa A, Amigues E, Barthélémy P (2013) Glycosyl-nucleolipids as new bioinspired amphiphiles. Molecules 18(10):12241–12263

    Article  CAS  Google Scholar 

  59. Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C, Chassande O, Barthélémy P (2015) Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew Chem Int Ed 54(15):4517–4521

    Article  CAS  Google Scholar 

  60. Latxague L, Gaubert A, Maleville D, Baillet J, Ramin MA, Barthélémy P (2016) Carbamate-based bolaamphiphile as low-molecular-weight hydrogelators. Gels 2(4):25

    Article  CAS  Google Scholar 

  61. Kowouvi K, Alies B, Gendrot M, Gaubert A, Vacher G, Gaudin K, Mosnier J, Pradines B, Barthélémy P, Grislaine L, Millet P (2019) Nucleoside-lipid-based nanocarriers for methylene blue delivery: potential application as anti-malarial drug. RSC Adv 9(33):18844–18852

    Article  CAS  Google Scholar 

  62. Dessane B, Smirani R, Bouguéon G, Kauss T, Ribot E, Devillard R, Barthélémy P, Naveau A, Crauste-Manciet S (2020) Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication. Sci Rep 10:2850

    Article  CAS  Google Scholar 

  63. Ramin MA, Latxague L, Sindhu KR, Chassande O, Barthélémy P (2017) Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials. Biomaterials 145:72–80

    Article  CAS  Google Scholar 

  64. Bansode ND, Sindhu KR, Morel C, Rémy M, Verget J, Boiziau C, Barthélémy P (2020) A disulfide based low molecular weight gel for the selective sustained release of biomolecules. Biomater Sci 8(11):3186–3192

    Article  CAS  Google Scholar 

  65. Baillet J, Gaubert A, Bassani DM, Verget J, Latxague L, Barthélémy P (2020) Supramolecular gels derived from nucleoside based bolaamphiphiles as a light-sensitive soft material. Chem Commun 56(23):3397–3400

    Article  CAS  Google Scholar 

  66. Kaplan JA, Barthélémy P, Grinstaff MW (2016) Self-assembled nanofiber hydrogels for mechanoresponsive therapeutic anti-TNFα antibody delivery. Chem Commun 52(34):5860–5863

    Article  CAS  Google Scholar 

  67. Skilling KJ, Kellam B, Ashford M, Bradshaw TD, Marlow M (2016) Developing a self-healing supramolecular nucleoside hydrogel. Soft Matter 12(43):8950–8957

    Article  CAS  Google Scholar 

  68. Angelerou MGF, Markus R, Paraskevopoulou V, Foralosso R, Clarke P, Alvarez CV, Chenlo M, Johnson L, Rutland C, Allen S, Brasnett C, Seddon A, Zelzer M, Marlow M (2020) Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. J Control Release 317:118–129

    Article  CAS  Google Scholar 

  69. Nuthanakanti A, Srivatsan SG (2016) Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs. Nanoscale 8(6):3607–3619

    Article  CAS  Google Scholar 

  70. Jia X, Zhao J, Xu S, Zhang F, Sun J, Lu R (2018) Luminescent organogels generated from nucleosides functionalized with carbazole: synthesis and probing for F−. Eur J Org Chem 2018(16):1910–1915

    Google Scholar 

  71. Zhang Y, He Y, Wojtas L, Shi X, Guo H (2020) Construction of supramolecular organogel with circularly polarized luminescence by self-assembled guanosine octamer. Cell Rep Phys Sci 1(10):100211

    Article  CAS  Google Scholar 

  72. Zhao X, Zhao L, Xiao Q, Xiong H (2020) Intermolecular hydrogen-bond interaction to promote thermoreversible 2′-deoxyuridine-based AIE-organogels. Chin Chem Lett 32:1363–1367

    Article  CAS  Google Scholar 

  73. Cunha A, Prévot G, Mousli Y, Barthélémy P, Crauste-Manciet S, Dehay B, Desvergnes V (2020) Synthesis and intracellular uptake of rhodamine–nucleolipid conjugates into a nanoemulsion vehicle. ACS Omega 5(11):5815–5823

    Article  CAS  Google Scholar 

  74. Scharf P, Müller J (2013) Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem 78(1):20–34

    Article  CAS  Google Scholar 

  75. Alies B, Ouelhazi MA, Noireau A, Gaudin K, Barthélémy P (2019) Silver ions detection via nucleolipids self-assembly. Anal Chem 91(3):1692–1695

    Article  CAS  Google Scholar 

  76. Patwa A, Labille J, Bottero J-Y, Thiery A, Barthélémy P (2015) Decontamination of nanoparticles from aqueous samples using supramolecular gels. Chem Commun 51(13):2547–2550

    Article  CAS  Google Scholar 

  77. Sicard M, Crauste-Manciet S, Dole F, Verget J, Thiery A, Barthélémy P (2020) Decontamination of organic pollutants from aqueous media using polymer-free bioinspired materials. ACS Sustainable Chem Eng 8(30):11052–11057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.G.S is grateful to the past and present lab members and collaborators who have worked in the area of nucleolipids. M.B.W is grateful to CSIR, India, and Wellcome Trust-DBT India Alliance for a graduate research fellowship. Prime Minister’s Research Fellowship (PMRF) to S.D. is greatly appreciated. S.G.S thanks Wellcome Trust-DBT India Alliance (IA/S/16/1/502360) and CSIR, India (02-0086/12/EMR-II), for research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seergazhi G. Srivatsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walunj, M.B., Dutta, S., Srivatsan, S.G. (2022). Architectures of Nucleolipid Assemblies and Their Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_13

Download citation

Publish with us

Policies and ethics