Abstract
Improvised explosive devices (IEDs) buried under the soil have become a new threat to the armored personal carriers (APC). It has generated the need to rethink the design or the material of the V-shaped plate placed under the APCs. The V-shaped plate is generally made of steel material. However, composite materials-Dyneema and Kevlar/Epoxy could be one of the potential materials which can replace the steel, as they are also widely used for high strain loading. Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber, has a high strength, low density (0.97 g/cc) and it is 15 times stronger than steel on an equal weight basis. Kevlar is an aramid fiber which is five times stronger than steel (on an equal weight basis) and are used with various matrix materials. Numerically and experimentally determined center point displacement of the V-shaped steel plate has been well reported in the literature. The present work focuses on the validation of the experimental results on the V-shaped steel plate with numerical results and also comparison of the predicted results of steel plates with V-shaped composite plates. Numerical results have shown a good correlation with the experimental results and followed the same progressive deformation as reported in the literature. An effort has been made to study the center point displacement of the V-shaped plate of Dyneema and Kevlar/Epoxy composites. A series of numerical simulations have been carried out on the V-shaped plate subjected under the blast loading using LS-DYNA. Explosives of different weights were considered. The charge location is considered to be below the mid point of V-shaped plate. The analysis showed that the V-shaped plates of Dyneema composite exhibited lesser deformation when compared to the Kevlar/Epoxy and steel plates. Study also showed that the Dyneema is a better material over steel and Kevlar composites for the use in V-shaped plates for APCs.
Keywords
- Blast loading
- Numerical simulation
- V-shaped plate
- Dyneema composite
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Chung Kim Yuen S, Langdon GS, Nurick GN, Pickering EG, Balden VH (2012) Response of V-shape plates to localised blast load: experiments and numerical simulation. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2012.02.007
Fallah AS, Micallef K, Langdon GS, Lee WC, Curtis PT, Louca LA (2014) Dynamic response of Dyneema® HB26 plates to localised blast loading. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2014.06.014
Kumar P, LeBlanc J, Stargel DS, Shukla A (2012) Effect of plate curvature on blast response of aluminum panels. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2012.02.004
Genson K (2006) Vehicle shaping for mine blast damage reduction
Anderson CE, Behner T, Weiss CE (2011) Mine blast loading experiments. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2011.04.005
Gurumurthy G (2008) Blast mitigation strategies for vehicles using shape optimization methods. Massachusetts Institute of Technology, Cambridge
Mouritz AP, Rajapakse YDS (2017) Explosion blast response of composites. Woodhead Publishing, Cambridge
Hazzard MK, Trask RS, Heisserer U, Van Der Kamp M, Hallett SR (2018) Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2018.09.005
Xin SH, Wen HM (2012) Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles. J Strain Anal Eng Des. https://doi.org/10.1177/0309324712454650
Acknowledgements
The authors thankfully acknowledge the Defense Research & Development Organization for funding the project vide grant #DFTM/03/3201/M/01/JATC. Authors would also like to thank Mr. Rohit Sankrityayan and Mr. Baljinder Singh of Mechanical Engineering Department, IIT Delhi, for their valuable suggestions.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Behera, S.K., Kumar, V., kumar, A., Chawla, A., Dubey, D.K. (2022). Numerical Modelling of V-Shaped Composite Plate Subjected to Blast Loading. In: Krishnapillai, S., R., V., Ha, S.K. (eds) Composite Materials for Extreme Loading . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4138-1_32
Download citation
DOI: https://doi.org/10.1007/978-981-16-4138-1_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-4137-4
Online ISBN: 978-981-16-4138-1
eBook Packages: EngineeringEngineering (R0)