Skip to main content

Phylogenetic Analysis

  • Chapter
  • First Online:
Bioinformatics in Rice Research

Abstract

In this chapter, the authors attempt to understand the underlying phylogeny principle and how researchers implement diverse methods to discover the appropriate phylogeny. Results obtained revealed that phylogenetic trees reflect evolutionary past as a canonical framework. Phylogenetic tree building step essentially comprises of five steps: (a) selecting molecular markers; (b) multiple sequence alignment; (c) determining the best evolutionary model; (d) determination of tree building method; and (e) assessment of tree reliability. Phylogenetic trees have various functional uses in different biological fields, such as conservation biology, epidemiology, forensics, cancer evolution, HIV transmission, gene expression prediction, protein structure prediction, and drug design. However, researchers face different challenges for generating a more accurate tree, like memory efficiency and implementation and optimization of the likelihood function. The authors believe, in the near future, the development of exciting new algorithms, which dramatically reduce the necessary amount of likeliness assessment, combined with enhanced knowledge of previously described high-performance machine problems in the group, is likely to detect more accurate phylogenetic tree that include 10,000–20,000 sequences. Additionally, it will also permit the tree inferences on medium-sized PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BI:

Bayesian inference

cpDNA:

Chloroplast DNA

dN:

Non-synonymous

dS:

Synonymous

GBS:

Genotyping-by-sequencing

HTU:

Hypothetical taxonomic units

ITS:

Internal transcribed spacer

JC:

Jukes and Cantor

LCA:

Last common ancestor

LUCA:

Last universal common ancestor

ML:

Maximum-like

MSA:

Multiple sequence alignment

OTUS:

Operational taxonomic units

PCR:

Polymerase chain reaction

UCES:

Ultra-conserved elements

References

  1. Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat Rev Genet. 2012 May;13(5):303–14.

    Article  CAS  PubMed  Google Scholar 

  2. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS. 1977 Nov 1;74(11):5088–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.

    CAS  PubMed  Google Scholar 

  4. Zuckerkandl E, Pauling L. Molecules as documents of evolutionary history. J Theor Biol. 1965 Mar 1;8(2):357–66.

    Article  CAS  PubMed  Google Scholar 

  5. Sanger F. Chemistry of insulin: determination of the structure of insulin opens the way to greater understanding of life processes. Science. 1959 May 15;129(3359):1340–4.

    Article  CAS  PubMed  Google Scholar 

  6. Doolittle RF, Feng DF. Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins. Cold Spring Harb Symp Quant Biol. 1987 Jan 1;52:869–74.

    Article  CAS  PubMed  Google Scholar 

  7. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–84.

    Article  CAS  PubMed  Google Scholar 

  8. Edwards SV. Is a new and general theory of molecular systematics emerging? Evolution. 2009 Jan;63(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  9. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001 Aug 1;126(4):1646–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YSN, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003 May 30;300(5624):1399–404.

    Article  CAS  PubMed  Google Scholar 

  11. Gray RD, Drummond AJ, Greenhill SJ. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science. 2009 Jan 23;323(5913):479–83.

    Article  CAS  PubMed  Google Scholar 

  12. Salipante SJ, Horwitz MS. Phylogenetic fate mapping. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baumann J. Use of homeoplastic auditory ossicles for chain defects within the scope of tympanoplasty. Z Laryngol Rhinol Otol. 1971 Feb;50(2):95–102.

    CAS  PubMed  Google Scholar 

  14. Kuzuya T, Kimura Y, Hoshida S, Kodama K, Nakamura N, Hamanaka Y, et al. The effect of CV-4151, a selective inhibitor of thromboxane synthetase, on prostanoid formation and platelet aggregation in humans. Cardiovasc Drugs Ther. 1988 Dec;2(5):693–700.

    Article  CAS  PubMed  Google Scholar 

  15. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. Bayesian inference of ancient human demography from individual genome sequences. Nat Genet. 2011 Sep 18;43(10):1031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, Holmes I, et al. Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res. 2008 Nov;18(11):1829–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy SS, Dasgupta R, Bagchi A. A review on phylogenetic analysis: a journey through modern era. Comput Mol Biosci. 2014 Sep 30;4(3):39–45.

    Article  Google Scholar 

  18. Scott AD, Baum DA. Phylogenetic tree. In: Kliman RM, editor. Encyclopedia of evolutionary biology [Internet]. Oxford: Academic Press; 2016. p. 270–6. [cited 2020 Oct 21]. Available from: http://www.sciencedirect.com/science/article/pii/B9780128000496002031.

    Chapter  Google Scholar 

  19. Choudhuri S. Chapter 9 - Phylogenetic analysis**The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS, or the Federal Government. In: Choudhuri S, editor. Bioinformatics for beginners [Internet]. Oxford: Academic Press; 2014. p. 209–18. [cited 2018 Nov 6]. Available from: http://www.sciencedirect.com/science/article/pii/B9780124104716000098.

    Chapter  Google Scholar 

  20. Ding G, Yu Z, Zhao J, Wang Z, Li Y, Xing X, et al. Tree of life based on genome context networks. PLoS One. 2008 Oct 9;3(10):e3357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xiong J. Essential bioinformatics. Cambridge: Cambridge University Press; 2006. 360 p.

    Book  Google Scholar 

  22. Munjal G, Hanmandlu M, Srivastava S. Phylogenetics algorithms and applications. Ambient Communications and Computer Systems. 2018 Dec 10;904:187–94.

    Article  PubMed Central  Google Scholar 

  23. Kapli P, Yang Z, Telford MJ. Phylogenetic tree building in the genomic age. Nat Rev Genet. 2020 Jul;21(7):428–44.

    Article  CAS  PubMed  Google Scholar 

  24. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics. 2015 Jun 15;31(12):i62–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paradis E, Claude J, Strimmer K. APE: analyses of Phylogenetics and evolution in R language. Bioinformatics. 2004 Jan 22;20(2):289–90.

    Article  CAS  PubMed  Google Scholar 

  26. Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V. Armadillo 1.1: an original workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS One. 2012;7(1):e29903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suchard MA, Redelings BD. BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics. 2006 Aug 15;22(16):2047–8.

    Article  CAS  PubMed  Google Scholar 

  28. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012 Aug;29(8):1969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang Y, Qiu Y, Minn AJ, Zhang NR. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012 Dec 1;61(6):1061–7.

    Article  PubMed  Google Scholar 

  31. Jeon Y-S, Lee K, Park S-C, Kim B-S, Cho Y-J, Ha S-M, et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):689–91.

    Article  CAS  PubMed  Google Scholar 

  32. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010 Mar 10;5(3):e9490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015 Jan;32(1):268–74.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007 Aug;24(8):1586–91.

    Article  CAS  PubMed  Google Scholar 

  35. Hellmuth M, Wieseke N, Lechner M, Lenhof H-P, Middendorf M, Stadler PF. Phylogenomics with paralogs. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017 Mar 1;34(3):772–3.

    CAS  PubMed  Google Scholar 

  37. Thomas GH, Hartmann K, Jetz W, Joy JB, Mimoto A, Mooers AO. PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences. Methods Ecol Evol. 2013;4(11):1011–7.

    Article  Google Scholar 

  38. Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011 Feb 15;27(4):592–3.

    Article  CAS  PubMed  Google Scholar 

  39. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 2015 Feb 13;16(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brown JW, Walker JF, Smith SA. Phyx: phylogenetic tools for unix. Bioinformatics. 2017 Jun 15;33(12):1886–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wheeler WC, Lucaroni N, Hong L, Crowley LM, Varón A. POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria. Cladistics. 2015;31(2):189–96.

    Article  PubMed  Google Scholar 

  42. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011 Apr 15;27(8):1164–5.

    Article  CAS  PubMed  Google Scholar 

  43. Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, et al. PyCogent: a toolkit for making sense from sequence. Genome Biol. 2007 Aug 21;8(8):R171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006 Nov 1;22(21):2688–90.

    Article  CAS  PubMed  Google Scholar 

  45. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019 Nov 1;35(21):4453–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun Z, Zhu Q, Xiong Y, Sun Y, Mou L, Zhang L. TreeGen: A Tree-Based Transformer Architecture for Code Generation. arXiv:191109983 [cs] [Internet]. 2019 Nov 28. [cited 2020 Dec 14]; Available from: http://arxiv.org/abs/1911.09983.

  47. Boc A, Diallo AB, Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W573–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dong W, Liu J, Yu J, Wang L, Zhou S. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLoS One [Internet]. 2012 Apr 12;7(4). [cited 2020 Oct 22]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325284/.

  49. Gielly L, Taberlet P. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol. 1994 Sep;11(5):769–77.

    CAS  PubMed  Google Scholar 

  50. Zhu W-D, Nie Z-L, Wen J, Sun H. Molecular phylogeny and biogeography of Astilbe (Saxifragaceae) in Asia and eastern North America. Bot J Linn Soc. 2013 Feb 1;171(2):377–94.

    Article  Google Scholar 

  51. Akhani H, Malekmohammadi M, Mahdavi P, Gharibiyan A, Chase MW. Phylogenetics of the Irano-Turanian taxa of Limonium (Plumbaginaceae) based on ITS nrDNA sequences and leaf anatomy provides evidence for species delimitation and relationships of lineages. Bot J Linn Soc. 2013 Mar 1;171(3):519–50.

    Article  Google Scholar 

  52. Townsend TM, Alegre RE, Kelley ST, Wiens JJ, Reeder TW. Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Mol Phylogenet Evol. 2008 Apr;47(1):129–42.

    Article  CAS  PubMed  Google Scholar 

  53. Smith DR. Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol. 2015 Apr 13;7(5):1227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Small RL, Cronn RC, Wendel JF. Use of nuclear genes for phylogeny reconstruction in plants. Aust Systematic Bot. 2004;17(2):145–70.

    Article  CAS  Google Scholar 

  55. Boekhorst J, Snel B. Identification of homologs in insignificant blast hits by exploiting extrinsic gene properties. BMC Bioinformatics. 2007 Sep 21;8(1):356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tekaia F. Inferring Orthologs: open questions and perspectives. Genomics Insights. 2016;9:17–28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol. 2002;37(3):121–47.

    Article  CAS  PubMed  Google Scholar 

  58. Bragg JG, Potter S, Bi K, Moritz C. Exon capture phylogenomics: efficacy across scales of divergence. Mol Ecol Resour. 2016 Sep;16(5):1059–68.

    Article  CAS  PubMed  Google Scholar 

  59. Rubin BER, Ree RH, Moreau CS. Inferring phylogenies from RAD sequence data. PLoS One. 2012;7(4):e33394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peñalba JV, Smith LL, Tonione MA, Sass C, Hykin SM, Skipwith PL, et al. Sequence capture using PCR-generated probes: a cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol Ecol Resour. 2014 Sep;14(5):1000–10.

    PubMed  Google Scholar 

  61. Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 2012 Aug 17;13:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li C, Ortí G, Zhang G, Lu G. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol. 2007 Mar 20;7:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Portik DM, Smith LL, Bi K. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (class: Amphibia, order: Anura). Mol Ecol Resour. 2016 Sep;16(5):1069–83.

    Article  CAS  PubMed  Google Scholar 

  64. Lemmon EM, Lemmon AR. High-throughput genomic data in systematics and Phylogenetics. Annu Rev Ecol Evol Syst. 2013 Nov 23;44(1):99–121.

    Article  Google Scholar 

  65. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012 Oct;61(5):717–26.

    Article  PubMed  Google Scholar 

  66. Weitemier K, SCK S, Cronn RC, Fishbein M, Schmickl R, McDonnell A, et al. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Appl Plant Sci. 2014 Sep;2(9):1400042.

    Article  Google Scholar 

  67. Schmickl R, Liston A, Zeisek V, Oberlander K, Weitemier K, Straub SCK, et al. Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). Mol Ecol Resour. 2016 Sep;16(5):1124–35.

    Article  CAS  PubMed  Google Scholar 

  68. Kadlec M, Bellstedt DU, Le Maitre NC, Pirie MD. Targeted NGS for species level phylogenomics: “made to measure” or “one size fits all”? PeerJ. 2017;5:e3569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yue F, Shi J, Tang J. Simultaneous phylogeny reconstruction and multiple sequence alignment. BMC Bioinformatics. 2009 Jan 30;10(Suppl 1):S11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Notredame C. Recent progress in multiple sequence alignment: a survey. Pharmacogenomics. 2002 Jan;3(1):131–44.

    Article  CAS  PubMed  Google Scholar 

  73. Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment11Edited by J. Thornton Journal of Molecular Biology. 2000 Sep 8;302(1):205–17.

    Article  CAS  Google Scholar 

  74. Ashkenazy H, Sela I, Levy Karin E, Landan G, Pupko T. Multiple sequence alignment averaging improves phylogeny reconstruction. Syst Biol. 2019 Jan 1;68(1):117–30.

    Article  CAS  PubMed  Google Scholar 

  75. Blackshields G, Wallace IM, Larkin M, Higgins DG. Analysis and comparison of benchmarks for multiple sequence alignment. In Silico Biol. 2006;6(4):321–39.

    CAS  PubMed  Google Scholar 

  76. Chang J-M, Di Tommaso P, Notredame C. TCS: a new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. Mol Biol Evol. 2014 Jun;31(6):1625–37.

    Article  CAS  PubMed  Google Scholar 

  77. Collingridge PW, Kelly S. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinformatics. 2012 May 30;13:117.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lake JA. The order of sequence alignment can bias the selection of tree topology. Mol Biol Evol. 1991 May;8(3):378–85.

    CAS  PubMed  Google Scholar 

  79. Penn O, Privman E, Landan G, Graur D, Pupko T. An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol. 2010 Aug;27(8):1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lutzoni F, Wagner P, Reeb V, Zoller S. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol. 2000 Dec;49(4):628–51.

    Article  CAS  PubMed  Google Scholar 

  81. Lücking R, Hodkinson BP, Stamatakis A, Cartwright RA. PICS-Ord: unlimited coding of ambiguous regions by pairwise identity and cost scores ordination. BMC Bioinformatics. 2011 Jan 7;12:10.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wheeler WC. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst Biol. 1995 Sep 1;44(3):321–31.

    Article  Google Scholar 

  83. Privman E, Penn O, Pupko T. Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol Biol Evol. 2012 Jan;29(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  84. Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015 Jul 1;43(W1):W7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arenas M. Trends in substitution models of molecular evolution. Front Genet [Internet]. 2015;6. [cited 2018 Nov 6]; Available from: https://www.frontiersin.org/articles/10.3389/fgene.2015.00319/full#B99.

  86. Jukes TH, Cantor CR. Chapter 24 - Evolution of protein molecules. In: Munro HN, editor. Mammalian protein metabolism [Internet]. New York: Academic Press; 1969. p. 21–132. [cited 2020 Oct 23]. Available from: http://www.sciencedirect.com/science/article/pii/B9781483232119500097.

    Chapter  Google Scholar 

  87. Collins DW, Jukes TH. Rates of transition and Transversion in coding sequences since the human-rodent divergence. Genomics. 1994 Apr 1;20(3):386–96.

    Article  CAS  PubMed  Google Scholar 

  88. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  89. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981 Nov 1;17(6):368–76.

    Article  CAS  PubMed  Google Scholar 

  90. Zharkikh A. Estimation of evolutionary distances between nucleotide sequences. J Mol Evol. 1994 Sep 1;39(3):315–29.

    Article  CAS  PubMed  Google Scholar 

  91. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–74.

    Article  CAS  PubMed  Google Scholar 

  92. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep 1;39(3):306–14.

    Article  CAS  PubMed  Google Scholar 

  93. Shoemaker JS, Fitch WM. Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated. Mol Biol Evol. 1989 May;6(3):270–89.

    CAS  PubMed  Google Scholar 

  94. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012 Aug;9(8):772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arenas M, Posada D. Simulation of genome-wide evolution under heterogeneous substitution models and complex multispecies coalescent histories. Mol Biol Evol. 2014 May;31(5):1295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sumner JG, Jarvis PD, Fernández-Sánchez J, Kaine BT, Woodhams MD, Holland BR. Is the general time-reversible model bad for molecular Phylogenetics? Syst Biol. 2012 Dec 1;61(6):1069–74.

    Article  PubMed  Google Scholar 

  97. Gatto L, Catanzaro D, Milinkovitch MC. Assessing the applicability of the GTR nucleotide substitution model through simulations. Evol Bioinformatics Online. 2007 Feb 4;2:145–55.

    Google Scholar 

  98. Jayaswal V, Jermiin LS, Poladian L, Robinson J. Two stationary nonhomogeneous Markov models of nucleotide sequence evolution. Syst Biol. 2011 Jan;60(1):74–86.

    Article  CAS  PubMed  Google Scholar 

  99. Muse SV, Gaut BS. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994 Sep;11(5):715–24.

    CAS  PubMed  Google Scholar 

  100. Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–36.

    CAS  PubMed  Google Scholar 

  101. Gupta MK, Vadde R. Genetic basis of adaptation and maladaptation via balancing selection. Zoology. 2019 Jul;10:125693.

    Article  Google Scholar 

  102. Gupta MK, Vadde R. Divergent evolution and purifying selection of the Type 2 diabetes gene sequences in Drosophila: a phylogenomic study. Genetica [Internet]. 2020 Aug 17 . [cited 2020 Aug 29]; https://doi.org/10.1007/s10709-020-00101-7.

  103. Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005 May 1;22(5):1208–22.

    Article  PubMed  CAS  Google Scholar 

  104. Pond SLK, Frost SDW. A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol. 2005 Mar;22(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  105. Yang Z, Nielsen R, Goldman N, Pedersen AM. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000 May;155(1):431–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wong WSW, Sainudiin R, Nielsen R. Identification of physicochemical selective pressure on protein encoding nucleotide sequences. BMC Bioinformatics. 2006 Mar 16;7:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Schneider A, Cannarozzi GM, Gonnet GH. Empirical codon substitution matrix. BMC Bioinformatics. 2005 Jun 1;6(1):134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yang Z, Nielsen R. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol. 2008 Mar;25(3):568–79.

    Article  CAS  PubMed  Google Scholar 

  109. Misawa K. A codon substitution model that incorporates the effect of the GC contents, the gene density and the density of CpG islands of human chromosomes. BMC Genomics. 2011 Aug 6;12:397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perez-Jimenez R, Inglés-Prieto A, Zhao Z-M, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol. 2011 May;18(5):592–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alvarez-Ponce D, Fares MA. Evolutionary rate and duplicability in the Arabidopsis thaliana protein–protein interaction network. Genome Biol Evol. 2012 Dec 1;4(12):1263–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fares MA, Barrio E, Sabater-Muñoz B, Moya A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol. 2002 Jul 1;19(7):1162–70.

    Article  CAS  PubMed  Google Scholar 

  113. Dayhoff MO, Schwartz RM, Orcutt BC. 22 a model of evolutionary change in proteins. In: Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation; 1978. p. 345–52.

    Google Scholar 

  114. Adachi J, Waddell PJ, Martin W, Hasegawa M. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol. 2000;50(4):348–58.

    Article  CAS  PubMed  Google Scholar 

  115. Kosiol C, Goldman N. Different versions of the Dayhoff rate matrix. Mol Biol Evol. 2005 Feb 1;22(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  116. Liberles DA, Teichmann SA, Bahar I, Bastolla U, Bloom J, Bornberg-Bauer E, et al. The interface of protein structure, protein biophysics, and molecular evolution. Protein Sci. 2012;21(6):769–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Halpern AL, Bruno WJ. Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol Biol Evol. 1998;15(7):910–7.

    Article  CAS  PubMed  Google Scholar 

  118. Taverna DM, Goldstein RA. The distribution of structures in evolving protein populations. Biopolymers. 2000;53(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  119. Arenas M, Sánchez-Cobos A, Bastolla U. Maximum-likelihood phylogenetic inference with selection on protein folding stability. Mol Biol Evol. 2015 Aug 1;32(8):2195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pardi F, Gascuel O. Combinatorics of distance-based tree inference. PNAS. 2012 Oct 9;109(41):16443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Felsenstein J, Felenstein J. Inferring phylogenies, vol. 2. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  122. Yang Z. Computational molecular evolution. Oxford: OUP; 2006. 375 p.

    Book  Google Scholar 

  123. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

    CAS  PubMed  Google Scholar 

  124. Roch S. Toward extracting all phylogenetic information from matrices of evolutionary distances. Science. 2010 Mar 12;327(5971):1376–9.

    Article  CAS  PubMed  Google Scholar 

  125. Steel M. A basic limitation on inferring phylogenies by pairwise sequence comparisons. J Theor Biol. 2009 Feb 7;256(3):467–72.

    Article  CAS  PubMed  Google Scholar 

  126. Huelsenbeck JP. Is the Felsenstein zone a fly trap? Syst Biol. 1997 Mar;46(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  127. Whelan S, Liò P, Goldman N. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet. 2001 May;17(5):262–72.

    Article  CAS  PubMed  Google Scholar 

  128. Huelsenbeck JP, Larget B, Miller RE, Ronquist F. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol. 2002;51(5):673–88.

    Article  PubMed  Google Scholar 

  129. Holder M, Lewis PO. Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet. 2003 Apr;4(4):275–84.

    Article  CAS  PubMed  Google Scholar 

  130. Challa S, Neelapu NRR. Phylogenetic trees: applications, construction, and assessment. In: Hakeem KR, Shaik NA, Banaganapalli B, Elango R, editors. Essentials of bioinformatics, In silico life sciences: agriculture [Internet], vol. III. Cham: Springer International Publishing; 2019. p. 167–92. https://doi.org/10.1007/978-3-030-19318-8_10. [cited 2020 Oct 24].

    Chapter  Google Scholar 

  131. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug 1;29(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  132. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999 Aug 1;16(8):1114.

    Article  CAS  Google Scholar 

  133. Stamatakis A. Phylogenetics: applications, Software and Challenges. Cancer Genomics Proteomics. 2005 Sep 1;2(5):301–5.

    CAS  PubMed  Google Scholar 

  134. Charalambous M, Trancoso P, Stamatakis A. Initial experiences porting a bioinformatics application to a graphics processor. In: Bozanis P, Houstis EN, editors. Advances in informatics, Lecture notes in computer science. Berlin: Springer; 2005. p. 415–25.

    Chapter  Google Scholar 

  135. Stamatakis A, Ott M, Ludwig T. RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In: Malyshkin V, editor. Parallel computing technologies. Berlin: Springer; 2005. p. 288–302. (Lecture Notes in Computer Science).

    Chapter  Google Scholar 

  136. Kosakovsky Pond SL, Muse SV. Column sorting: rapid calculation of the phylogenetic likelihood function. Syst Biol. 2004 Oct;53(5):685–92.

    Article  PubMed  Google Scholar 

  137. Zmasek CM, Eddy SR. ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics. 2001 Apr 1;17(4):383–4.

    Article  CAS  PubMed  Google Scholar 

  138. Hughes T, Hyun Y, Liberles DA. Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics. 2004 Apr 29;5(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Plaisant C, Grosjean J, Bederson BB. Spacetree: supporting exploration in large node link tree, design evolution and empirical evaluation. In: IEEE Symposium on Information Visualization, 2002 INFOVIS 2002; 2002. p. 57–64.

    Chapter  Google Scholar 

  140. Arvelakis A, Reczko M, Stamatakis A, Symeonidis A, Tollis IG. Using treemaps to visualize phylogenetic trees. In: Oliveira JL, Maojo V, Martín-Sánchez F, Pereira AS, editors. Biological and medical data analysis. Berlin: Springer; 2005. p. 283–93. (Lecture Notes in Computer Science).

    Chapter  Google Scholar 

  141. Stolk B, Abdoelrahman F, Koning A, Wielinga P, Neefs J-M, Stubbs A, et al. Mining the human genome using virtual reality. In: Proceedings of the Fourth Eurographics Workshop on Parallel Graphics and Visualization. Goslar, DEU: Eurographics Association; 2002. p. 17–21. (EGPGV ‘02).

    Google Scholar 

  142. Carrizo SF. Phylogenetic trees: an information visualisation perspective. In: Proceedings of the second conference on Asia-Pacific bioinformatics, vol. 29. Darlinghurst: Australian Computer Society, Inc.; 2004. p. 315–20. (APBC ‘04).

    Google Scholar 

Download references

Conflicts of Interest

None.

Additional Information

Figure 9.1b has been used under the terms of the Creative Commons Attribution License [20].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M.K. et al. (2021). Phylogenetic Analysis. In: Gupta, M.K., Behera, L. (eds) Bioinformatics in Rice Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-3993-7_9

Download citation

Publish with us

Policies and ethics