Skip to main content

Insights for Urban Road Safety: A New Fusion-3DCNN-PFP Model to Anticipate Future Congestion from Urban Sensing Data

  • Chapter
  • First Online:
Periodic Pattern Mining

Abstract

Traffic congestion is a significant challenge that cities worldwide have to tackle as it poses many potential risks. Building a predictive system to anticipate future congestion would alleviate them. Furthermore, if the system can discover future frequent traffic congestion patterns, authorities can build reaction plans to deal with congestion more effectively. Unfortunately, other works have failed to achieve it. This study proposes a novel dynamic system to address the mentioned problem. It integrates a traffic congestion prediction model and a periodic-frequent pattern discovery algorithm. In particular, we utilize our novel Fusion-3DCNN deep learning model and a periodic-frequent pattern discovery algorithm in the system. The former predicts long-term traffic congestion on citywide mesh codes using multi-modal urban sensing data, while the latter identifies sets of mesh codes that are regularly predicted to have heavy traffic congestion. Experimental results on a real-world dataset collected in Kobe City, Japan, from 2014 to 2015 show that our framework is efficient in terms of accuracy and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.stat.go.jp/english/data/mesh/02.html.

  2. 2.

    https://keras.io/.

  3. 3.

    https://www.tensorflow.org/.

References

  1. B. Alkouz, Z. Al Aghbari, SNSJam: road traffic analysis and prediction by fusing data from multiple social networks. Inf. Process. Manag. 57(1), 102139 (2020)

    Google Scholar 

  2. B. Alsolami, R. Mehmood, A. Albeshri, Hybrid Statistical and Machine Learning Methods for Road Traffic Prediction: A Review and Tutorial (Springer International Publishing, Cham, 2020), pp. 115–133

    Google Scholar 

  3. S. An, H. Yang, J. Wang, N. Cui, J. Cui, Mining urban recurrent congestion evolution patterns from GPS-equipped vehicle mobility data. Inf. Sci. 373, 515–526 (2016)

    Article  Google Scholar 

  4. N. Bjorck, C.P. Gomes, B. Selman, K.Q. Weinberger, Understanding batch normalization, in Advances in Neural Information Processing Systems, pp. 7694–7705 (2018)

    Google Scholar 

  5. G. Booch, F. Fabiano, L. Horesh, K. Kate, J. Lenchner, N. Linck, A. Loreggia, K. Murugesan, N. Mattei, F. Rossi et al., Thinking fast and slow in ai (2020). arXiv:2010.06002

  6. M. Chen, X. Yu, Y. Liu, PCNN: deep convolutional networks for short-term traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 19(11), 3550–3559 (2018)

    Article  Google Scholar 

  7. C. Chou, Y. Huang, C. Huang, V. Tseng, Long-term traffic time prediction using deep learning with integration of weather effect, in Advances in Knowledge Discovery and Data Mining (Springer International Publishing, Cham, 2019), pp. 123–135

    Google Scholar 

  8. M. Dao, N. Nguyen, K. Zettsu, Multi-time-horizon traffic risk prediction using spatio-temporal urban sensing data fusion, in 2019 IEEE International Conference on Big Data (Big Data), pp. 2205–2214 (2019)

    Google Scholar 

  9. M.-S. Dao, K. Zettsu, Complex event analysis of urban environmental data based on deep CNN of spatiotemporal raster images, in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 2160–2169

    Google Scholar 

  10. X. Di, Y. Xiao, C. Zhu, Y. Deng, Q. Zhao, W. Rao, Traffic congestion prediction by spatiotemporal propagation patterns, in 2019 20th IEEE International Conference on Mobile Data Management (MDM), pages 298–303 (2019)

    Google Scholar 

  11. X. Fan, C. Xiang, C. Chen, P. Yang, L. Gong, X. Song, P. Nanda, X. He, BuildSenSys: reusing building sensing data for traffic prediction with cross-domain learning. IEEE Trans. Mob. Comput., pp. 1–1 (2020)

    Google Scholar 

  12. S. Guo, Y. Lin, S. Li, Z. Chen, H. Wan, Deep spatial-temporal 3d convolutional neural networks for traffic data forecasting. IEEE Trans. Intell. Transp. Syst. 20(10), 3913–3926 (2019)

    Article  Google Scholar 

  13. Japan Road Traffic InformationCenter. Traffic congestion data. www.jartic.or.jp

  14. Data Integration and Analysis System Program. Precipitation data. www.diasjp.net

  15. S. Ito, Z. Koji, Assessing a risk-avoidance navigation system based on localized torrential rain data. MATEC Web Conf. 308, 03006 (2020)

    Google Scholar 

  16. R.U. Kiran, Y. Watanobe, B. Chaudhury, K. Zettsu, M. Toyoda, M. Kitsuregawa, Discovering maximal periodic-frequent patterns in very large temporal databases, in 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 11–20 (2020)

    Google Scholar 

  17. R.U. Kiran, M. Kitsuregawa, P.K. Reddy, Efficient discovery of periodic-frequent patterns in very large databases. J. Syst. Softw. 112, 110 – 121 (2016)

    Google Scholar 

  18. I. Lana, J. Del Ser, M. Velez, E.I. Vlahogianni, Road traffic forecasting: recent advances and new challenges. IEEE Intell. Transp. Syst. Mag. 10(2), 93–109 (2018)

    Article  Google Scholar 

  19. Y. Li, C. Shahabi, A brief overview of machine learning methods for short-term traffic forecasting and future directions. SIGSPATIAL Spec. 10(1), 3–9 (2018)

    Google Scholar 

  20. B. Liao, J. Zhang, C. Wu, D. McIlwraith, T. Chen, S. Yang, Y. Guo, F. Wu, Deep sequence learning with auxiliary information for traffic prediction, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18 (ACM, New York, 2018), pp. 537–546

    Google Scholar 

  21. A.M. Nagy, V. Simon, Survey on traffic prediction in smart cities. Pervasive Mob. Comput. 50, 148–163 (2018)

    Article  Google Scholar 

  22. H. Nguyen, W. Liu, F. Chen, Discovering congestion propagation patterns in spatio-temporal traffic data. IEEE Trans. Big Data 3(2), 169–180 (2016)

    Article  Google Scholar 

  23. Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, J. Zhang, Urban traffic prediction from spatio-temporal data using deep meta learning, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19 (ACM, New York, 2019), pp. 1720–1730

    Google Scholar 

  24. N. Pourebrahim, S. Sultana, J. Thill, S. Mohanty, Enhancing trip distribution prediction with twitter data: comparison of neural network and gravity models, in Proceedings of the 2Nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, GeoAI’18 (ACM, New York, 2018), pp. 5–8

    Google Scholar 

  25. Traffic Accident Research and Analysis. Traffic accident data. www.itarda.or.jp

  26. F. Schimbinschi, L. Moreira-Matias, V.X. Nguyen, J. Bailey, Topology-regularized universal vector autoregression for traffic forecasting in large urban areas. Expert. Syst. Appl. 82, 301–316 (2017)

    Google Scholar 

  27. X. Shi, H. Qi, Y. Shen, G. Wu, B. Yin, A spatial-temporal attention approach for traffic prediction. IEEE Trans. Intell. Transp. Syst., pp. 1–10 (2020)

    Google Scholar 

  28. J. Song, C. Zhao, S. Zhong, T.A.S. Nielsen, A.V. Prishchepov, Mapping spatio-temporal patterns and detecting the factors of traffic congestion with multi-source data fusion and mining techniques. Comput., Environ. Urban Syst. 77, 101364 (2019)

    Google Scholar 

  29. J. Tang, F. Liu, Y. Zou, W. Zhang, Y. Wang, An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Trans. Intell. Transp. Syst. 18(9), 2340–2350 (2017)

    Article  Google Scholar 

  30. D.A. Tedjopurnomo, Z. Bao, B. Zheng, F. Choudhury, A.K. Qin, A survey on modern deep neural network for traffic prediction: trends, methods and challenges. IEEE Trans. Knowl. Data Eng., pp. 1–1 (2020)

    Google Scholar 

  31. Twitter. Social networks data. www.twitter.com

  32. D. Xie, M. Wang, X. Zhao, A spatiotemporal apriori approach to capture dynamic associations of regional traffic congestion. IEEE Access 8, 3695–3709 (2020)

    Article  Google Scholar 

  33. L. Yang, L. Wang, Mining traffic congestion propagation patterns based on spatio-temporal co-location patterns. Evolutionary Intelligence (2019)

    Google Scholar 

  34. L. Yang, L. Wang, Mining traffic congestion propagation patterns based on spatio-temporal co-location patterns. Evolutionary Intelligence, pp. 1–13 (2019)

    Google Scholar 

  35. R. Yu, Y. Li, C. Shahabi, U. Demiryurek, Y. Liu, Deep learning: a generic approach for extreme condition traffic forecasting, in Proceedings of the 2017 SIAM international Conference on Data Mining (SIAM, 2017), pp. 777–785

    Google Scholar 

  36. X. Yuan, Z. Zhou, T. Yang, Hetero-ConvLSTM: a deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18 (ACM, New York, 2018), pp. 984–992

    Google Scholar 

  37. P. Zhao, H. Haoyu, Geographical patterns of traffic congestion in growing megacities: big data analytics from Beijing. Cities 92, 164–174 (2019)

    Article  Google Scholar 

  38. Y. Zheng, L. Liao, F. Zou, M. Xu, Z. Chen, PLSTM: long short-term memory neural networks for propagatable traffic congested states prediction, in International Conference on Genetic and Evolutionary Computing (Springer, Berlin, 2019), pp. 399–406

    Google Scholar 

  39. H. Zhou, K. Hirasawa, Spatiotemporal traffic network analysis: technology and applications. Knowl. Inf. Syst., pp. 1–37 (2018)

    Google Scholar 

  40. J. Zhu, C. Huang, M. Yang, G. Pui, C. Fung, Context-based prediction for road traffic state using trajectory pattern mining and recurrent convolutional neural networks. Inform. Sci. 473, 190–201 (2019)

    Google Scholar 

  41. Y. Zou, X. Hua, Y. Zhang, Y. Wang, Hybrid short-term freeway speed prediction methods based on periodic analysis. Can. J. Civ. Eng. 42(8), 570–582 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution of Ngoc-Thanh Nguyen, currently Ph.D. students of Western Norway University of Applied Sciences, to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Son Dao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dao, MS., Uday Kiran, R., Zettsu, K. (2021). Insights for Urban Road Safety: A New Fusion-3DCNN-PFP Model to Anticipate Future Congestion from Urban Sensing Data. In: Kiran, R.U., Fournier-Viger, P., Luna, J.M., Lin, J.CW., Mondal, A. (eds) Periodic Pattern Mining . Springer, Singapore. https://doi.org/10.1007/978-981-16-3964-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3964-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3963-0

  • Online ISBN: 978-981-16-3964-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics