Skip to main content

Foundation of Coal Mechanics

  • Chapter
  • First Online:
Coal Mechanics

Abstract

The basic concept of force in coal mechanics consists of external force and stress. The external force is generated from the outside of coal seam and can be further divided into two types, surface force and body force. Surface force is applied to the coal surface, such as gas pressure, coal support force and the contact forces between different coal blocks. Body force, such as gravity and inertia force, is continuously distributed within the coal and is also called a mass force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Detournay, E., & Cheng, A. H. D. (1993). Fundamentals of poroelasticity, comprehensive rock engineering: principles, practice and projects[J]. Analysis and Design Method, 140(1), 113–171.

    Google Scholar 

  2. Terzaghi K. (1923) Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen[J]. Sitzungsberichte der Akademie der Wissenschaften in Wien, MathematischNaturwissenschaftliche Klasse, Abteilung IIa, 132, 125–138.

    Google Scholar 

  3. Biot M. A. (1935). Le problèmc de la consolidation des matières argileuses sous une charge[C]. Annales de la Société Scientifique de Bruxelles, série B, 55, 110–113.

    Google Scholar 

  4. Maurice, A. B. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

    Article  Google Scholar 

  5. James, R. R., & Michael, P. C. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2), 227–241.

    Article  Google Scholar 

  6. John, R. (1985). Effect of pore fluid diffusion on deformation and failure of rock. Mechanics of Geomaterials, 315–347.

    Google Scholar 

  7. Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes [J]. International Journal of Rock Mechanics and Mining Sciences, 60,160–170.

    Google Scholar 

  8. Zhang, J., Bai, M., & Roegiers, J. C. (2006). On drilling directions for optimizing horizontal well stability using a dual-porosity poroelastic approach. Journal of Petroleum Science and Engineering, 53(1), 61–76.

    Google Scholar 

  9. Zhang, J., & Roegiers, J. C. (2015). Double porosity finite element method for borehole modeling. Rock Mechanics and Rock Engineering, 38(31), 217–242.

    Google Scholar 

  10. Zhang, J., Bai, M., & Roegiers, J. C. (2003). Dual-porosity poroelastic analyses of wellbore stability. International Journal of Rock Mechanics and Mining Sciences, 40, 473–483.

    Google Scholar 

  11. Zhang, J. (2002). Dual-porosity approach to wellbore stability in naturally fractured reservoirs. University of Oklahoma.

    Google Scholar 

  12. Liu, J. S., Chen, Z. W., Derek, E., et al. (2011). Interactions of multiple processes during CBM extraction: A critical review. International Journal of Coal Geology, 87(3), 175–189.

    Google Scholar 

  13. Chen, M., & Chen, Z. D. (1999). Effective stress laws for multi-porosity media. Applied Mathematics and Mechanics, 20(11), 1207–1213.

    Article  Google Scholar 

  14. Kagan, T., & Yavuz, M. C. (1995). Effective stress principle for saturated fractured porous media. Water Resources Research, 31(12), 3103–3106.

    Google Scholar 

  15. Arkady, G., & Roger, B. (2000). Flow of coal-bed methane to a gallery. Transport in Porous Media, 41(1), 1–16.

    Article  Google Scholar 

  16. Zhang, J., Bai, M., & Roegiers, J. C. (2004). Dual-porosity elastoplastic analyses of non-isothermal one dimensional consolidation. Geotechnical and Geological Engineering, 22(4), 589–610.

    Google Scholar 

  17. Willi, P., Eva, G., & Gabriela, T. (2006). Elasticity of porous ceramics—A critical study of modulus−porosity relations. Journal of the European Ceramic Society, 26(7), 1085–1097.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanping Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Y., Liu, Q., Ren, T. (2021). Foundation of Coal Mechanics. In: Coal Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-16-3895-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3895-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3894-7

  • Online ISBN: 978-981-16-3895-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics