Skip to main content

Growth Enhancement Effect of Gene Expression of Plants Induced by Active Oxygen Species in Oxygen Plasma

  • Chapter
  • First Online:
Agritech: Innovative Agriculture Using Microwaves and Plasmas

Abstract

Enhancements of germination and growth of plants are observed after oxygen plasma irradiation to seeds. Gene expressions in plant seeds irradiated by oxygen plasma were investigated using DNA microarray bioinformatics analysis to clarify the pathways responsible for growth enhancement of plants. Gene expressions involved in photosynthesis and energy production by active oxygen species in oxygen plasma are one of the factors for the growth enhancement of plants. The observed growth enhancement effect is not passed on to the next generation by irradiating seeds, and there is no significant change in gene expressions in second-generation seeds. The observed growth enhancement of plants is brought about by epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitazaki S, Koga K, Shiratani M, Hayashi N. Redox characteristics of thiol compounds using radicals produced by water vapor radio frequency discharge. Proc AVS 57th Int Symp. 2010;670

    Google Scholar 

  2. Dubinov AE, Lazarenko EM, Selemir VD. Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci. 2000;28(1):180. https://doi.org/10.1109/27.842898.

    Article  Google Scholar 

  3. Hayashi N, Nakahigashi A, Goto M, Kitazaki S, Koga K, Shiratani M. Redox characteristics of thiol compounds using radicals produced by water vapor radio frequency discharge. Jpn J Appl Phys. 2011;50(8S1):08JF04. https://doi.org/10.1143/JJAP.50.08JF04.

    Article  CAS  Google Scholar 

  4. Kitazaki S, Koga K, Shiratani M, Hayashi N. Growth control of dry yeast using scalable atmospheric-pressure dielectric barrier discharge plasma irradiation. Jpn J Appl Phys. 2013;52(11):11PJ02. https://doi.org/10.1143/JJAP.51.11PJ02.

    Article  CAS  Google Scholar 

  5. Volin JC, Denes FS, Young RA, Park SMT. Modification of seed germination performance through cold plasma chemistry technology. Crop Sci. 2000;40:1706–18. https://doi.org/10.2135/cropsci2000.4061706x.

    Article  CAS  Google Scholar 

  6. Jiafeng J, He X, Ling L, Jiangang L, Hanliang S, Xu Q, Renhong Y, Dong Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol. 2014;16(1):54–8. https://doi.org/10.1088/1009-0630/16/1/12.

    Article  CAS  Google Scholar 

  7. Jiayun T, He R, Xiaoli Z, Ruoting Z, Weiwen C, Size Y. Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol. 2014;16:260–6. https://doi.org/10.1088/1009-0630/16/3/16.

    Article  CAS  Google Scholar 

  8. Almansouri M, Kinet JM, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soli. 2001;231:243–54. https://doi.org/10.1023/A:1010378409663.

    Article  CAS  Google Scholar 

  9. Song SQ, Lei YB, Tian XR. Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian J Plant Physiol. 2005;52:793–800. https://doi.org/10.1007/s11183-005-0117-3.

    Article  CAS  Google Scholar 

  10. Einaga H, Yoshihara E, Matsuo Y, Yodoi J. Oxidative stress and redox regulation-protein oxidative modification and activation. J Anal Biosci. 2009;32(4):265–72.

    CAS  Google Scholar 

  11. Rudolph TK, Freeman BA. Transduction of redox signaling by electrophile-protein reactions. Sci Signal. 2009;2:ref7. https://doi.org/10.1126/scisignal.290re7.

    Article  Google Scholar 

  12. Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45:549. https://doi.org/10.1016/j.freeradbiomed.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  13. Nordberga J, Arner ESJ. Reactive oxygen species, antioxidants and the mammalian thiredoxin system. Free Radic Biol Med. 2001;31:1287. https://doi.org/10.1016/s0891-5849(01)00724-9.

    Article  Google Scholar 

  14. Gelhaye E, Rouhier N, Navrot N, Jacquot JP. The plant thioredoxin system. Cell Mol Life Sci. 2005;62(1):24–35. https://doi.org/10.1007/s00018-004-4296-4.

    Article  CAS  PubMed  Google Scholar 

  15. Santosa CVD, Reya P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006;11:329. https://doi.org/10.1016/j.tplants.2006.05.005.

    Article  CAS  Google Scholar 

  16. Kitazaki S, Koga K, Shiratani M, Hayashi N. Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn J Appl Phys. 2012;51:01AE01. https://doi.org/10.1143/JJAP.51.01AE01.

    Article  CAS  Google Scholar 

  17. Akiyoshi Y, Hayashi N, Kitazaki S, Koga K, Shiratani M. MRS Proc. 1469, mrss12-1; 2012.

    Google Scholar 

  18. Subaedah S, Uematsu H, Hayashi N. Activation of EL-4 T-cells by irradiation with atmospheric oxygen plasma. Jpn J Appl Phys. 2020;59(SJ):SJJF03. https://doi.org/10.35848/1347-4065/ab83db.

    Article  CAS  Google Scholar 

  19. Hayashi N, Inoue Y, Kyumoto Y, Kukita T. Characteristics of differentiation of osteoclast cells irradiated with active species in atmospheric oxygen plasma. Jpn J Appl Phys. 2020;59(SJ):SJJF02. https://doi.org/10.35848/1347-4065/ab7ba9.

    Article  CAS  Google Scholar 

  20. Hayashi N, Yao YC, Matsunaga Y. Regulation of macrophage-like cell activity driven by atmospheric oxygen plasma. Jpn J Appl Phys. 2020;59(SH):SHHF03. https://doi.org/10.35848/1347-4065/ab72cf.

    Article  CAS  Google Scholar 

  21. Hayashi N, Miyamaru Y, Aijima R, Yamashita Y. Activation of p53-mediated apoptosis pathway in HSC3 cancer cell irradiated by atmospheric DBD oxygen plasma. IEEE Trans Plasma Sci. 2018;47(2):1093–9. https://doi.org/10.1109/TPS.2018.2867431.

    Article  Google Scholar 

  22. Hayashi N, Ono R, Uchida S. Growth enhancement of plant by plasma and UV light irradiation to seeds. J Photopolym Sci Technol. 2015;28:445–8. https://doi.org/10.2494/photopolymer.28.445.

    Article  CAS  Google Scholar 

  23. Nakano R, Hayashi N, Aijima R, Yamashita Y, Kobayashi A. Gene expression effect of plant seeds irradiated by low pressure oxygen plasma. J IAPS. 2018;26:91–5.

    CAS  Google Scholar 

  24. Watanabe S, Ono R, Hayashi N, Tashiro K, Kuhara S, Inoue A, Yasuda K, Hagiwara H. Growth enhancement and gene expression of arabidopsis irradiated by active oxygen species. Jpn J Appl Phys. 2016;55:07LG10-1–6. https://doi.org/10.7567/JJAP.55.07LG10.

    Article  CAS  Google Scholar 

  25. Nakano R, Tashiro K, Aijima R, Hayashi N. Effect of oxygen plasma irradiation on gene expression in plant seeds induced by active oxygen species. Plasma Med. 2016;6:303–13. https://doi.org/10.1615/PlasmaMed.2016019093.

    Article  Google Scholar 

  26. Hayashi N, Ono R, Shiratani M, Yonesu A. Antioxidative activity of plant and regulation of Brassicaceae induced by oxygen radical irradiation. Jpn J Appl Phys. 2015;54:06GD01-1–5. https://doi.org/10.7567/JJAP.54.06GD01.

    Article  CAS  Google Scholar 

  27. Hayashi N, Ono R, Nakano R, Shiratani M, Tashiro K, Kuhara S, Yasuda K, Hagiwara H. DNA microarray analysis of plant seeds irradiated by active oxygen species in oxygen plasma. Plasma Med. 2016;6:459–71. https://doi.org/10.1615/PlasmaMed.2016018933.

    Article  Google Scholar 

  28. Hayashi N, Akiyoshi Y, Kobayashi Y, Kanda Y, Ohshima Y, GotoM. Inactivation characteristics of Bacillus thuringiensis spore in liquid using atmospheric torch plasma using oxygen. Vacuum. 2013;88:173–6.

    Article  CAS  Google Scholar 

  29. Ono R, Hayashi N. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma. Jpn J Appl Phys. 2015;54:06GD03-1–5. https://doi.org/10.7567/JJAP.54.06GD03.

    Article  CAS  Google Scholar 

  30. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  31. Holmgren A. Annu. Thioredoxin Rev Biochem. 1985;54:237–71.

    Article  CAS  Google Scholar 

  32. Rudolph TK, Freeman BA. Transduction of redox signaling by electrophile-protein reactions. Sci Signal. 2009;2(90):re7-1–13.

    Article  Google Scholar 

  33. Santos CVD, Reya P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006;11(7):329–34.

    Article  Google Scholar 

  34. Ashburner M, Ball CA, Blake JA, Butler H, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Tarver LI, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    Article  CAS  Google Scholar 

  35. Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucl Acids Res. 2004;32(1):D258–61.

    Article  Google Scholar 

  36. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Article  Google Scholar 

  37. Krebs HA, Johnson WA. The role of citric acid in intermediate metabolism in animal tissues. J Enzymol. 1937;4:148–56.

    CAS  Google Scholar 

  38. Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31(4):645–60.

    Article  CAS  Google Scholar 

  39. Andrews TJ, Whitney SM. Manipulating ribulose bisphosphate carboxylase /oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys. 2003;414(2):159–69.

    Article  Google Scholar 

  40. Bassham J, Benson A, Calvin M. The path of carbon in photosynthesis VIII. The role of malic acid. J Biol Chem. 1950;185:781–8.

    Article  CAS  Google Scholar 

  41. Hardtke CS. Transcriptional auxin-brassinosteroid crosstalk: who’s talking? BioEssays. 2007;29(11):1115–23.

    Article  CAS  Google Scholar 

  42. Abel S, Theologis A. Early genes and auxin action. Plant Physiol 1996 May;111(1):9–17.

    Google Scholar 

  43. Wang S, Hagen G, Guilfoyle TJ. ARF-aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression. Plant Signal Behav. 2013;8(6):e24526-1-5.

    Google Scholar 

  44. Vanneste S, Friml J. Plant signaling: deconstructing auxin sensing. Nat Chem Biol. 2012;8:415–6.

    Article  CAS  Google Scholar 

  45. Gilbert N, Thomson I, Boyle S, Allan J, Ramsahoye B, Bickmore WA. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J Cell Biol. 2007;177(3):401–11.

    Article  CAS  Google Scholar 

  46. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Na Protoc. Dec 2008;4(1):44–57.

    Article  Google Scholar 

  47. Thomas JO. Histone H1: location and role. Curr Opin Cell Biol. 1999;11(3):312–7. https://doi.org/10.1016/S0955-0674(99)80042-8.

    Article  CAS  PubMed  Google Scholar 

  48. Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science. 1994;251(4994):643–9. https://doi.org/10.1126/science.1899487.

    Article  Google Scholar 

  49. Matzke MA, Matzke AJM, Kooter J. RNA: guiding gene silencing. Science. 2001;293(5332):1080–3. https://doi.org/10.1126/science.1063051.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuya Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, N. (2022). Growth Enhancement Effect of Gene Expression of Plants Induced by Active Oxygen Species in Oxygen Plasma. In: Horikoshi, S., Brodie, G., Takaki, K., Serpone, N. (eds) Agritech: Innovative Agriculture Using Microwaves and Plasmas. Springer, Singapore. https://doi.org/10.1007/978-981-16-3891-6_12

Download citation

Publish with us

Policies and ethics