Skip to main content

Geometrically Matched Multi-source Microscopic Image Synthesis Using Bidirectional Adversarial Networks

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 784)

Abstract

Microscopic images from multiple modalities can produce plentiful experimental information. In practice, biological or physical constraints under a given observation period may prevent researchers from acquiring enough microscopic scanning. Recent studies demonstrate that image synthesis is one of the popular approaches to release such constraints. Nonetheless, most existing synthesis approaches only translate images from the source domain to the target domain without solid geometric associations. To embrace this challenge, we propose an innovative model architecture, BANIS, to synthesize diversified microscopic images from multi-source domains with distinct geometric features. The experimental outcomes indicate that BANIS successfully synthesizes favorable image pairs on C. elegans microscopy embryonic images. To the best of our knowledge, BANIS is the first application to synthesize microscopic images that associate distinct spatial geometric features from multi-source domains.

Keywords

  • Cross domain synthesis
  • Bidirectional adversarial networks
  • Multi-source microscopic images
  • Geometric matching

This study is supported by an NIH research project grants (R01GM097576).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our code is available on Github at: https://github.com/junzhuang-code/BANIS.

References

  1. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37, 803–814 (2017)

    CrossRef  Google Scholar 

  2. Dai, M.Q., Zheng, W., Huang, Z., Yung, L.Y.L.: Aqueous phase synthesis of widely tunable photoluminescence emission CdtTe/CdS core/shell quantum dots under a totally ambient atmosphere. J. Mater. Chem. 22, 16336–16345 (2012)

    CrossRef  Google Scholar 

  3. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38, 2375–2388 (2019)

    CrossRef  Google Scholar 

  4. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)

  5. Femmam, S., Iles, A., Bessaid, A.: Optimizing magnetic resonance imaging reconstructions. Electron. Imaging Signal Process. J. SPIE Newsroom (2015)

    Google Scholar 

  6. Gao, L., Pan, H., Han, J., Xie, X., Zhang, Z., Zhai, X.: Corner detection and matching methods for brain medical image classification. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2016)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imaging 38, 1016–1025 (2018)

    CrossRef  Google Scholar 

  9. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: MR image synthesis by contrast learning on neighborhood ensembles. Med. Image Anal. 24, 63–76 (2015)

    CrossRef  Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  11. Lee, J., Carass, A., Jog, A., Zhao, C., Prince, J.L.: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning. In: Medical Imaging 2017: Image Processing. International Society for Optics and Photonics (2017)

    Google Scholar 

  12. Liu, H., Cocea, M.: Granular computing-based approach of rule learning for binary classification. Granular Comput. 4, 275–283 (2019)

    CrossRef  Google Scholar 

  13. Lu, C., Mandal, M.: Automated analysis and diagnosis of skin melanoma on whole slide histopathological images. Pattern Recogn. 48, 2738–2750 (2015)

    CrossRef  Google Scholar 

  14. Meinel, L.A., Stolpen, A.H., Berbaum, K.S., Fajardo, L.L., Reinhardt, J.M.: Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine (2007)

    Google Scholar 

  15. Miller, M.I., Christensen, G.E., Amit, Y., Grenander, U.: Mathematical textbook of deformable neuroanatomies. Proceedings of the National Academy of Sciences (1993)

    Google Scholar 

  16. Mou, L., et al.: CS2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2020)

    CrossRef  Google Scholar 

  17. Nie, D., et al.: Medical image synthesis with deep convolutional adversarial networks. IEEE Trans. Biomed. Eng. 65, 2720–2730 (2018)

    CrossRef  Google Scholar 

  18. Parisi, L., RaviChandran, N., Lanzillotta, M.: Supervised machine learning for aiding diagnosis of knee osteoarthritis: a systematic review and meta-analysis (2020)

    Google Scholar 

  19. Peng, C., Pan, N., Xie, Z., Liu, L., Xiang, J., Liu, C.: Determination of bisphenol a by a gold nanoflower enhanced enzyme-linked immunosorbent assay. Anal. Lett. 49, 1492–1501 (2016)

    CrossRef  Google Scholar 

  20. Su, R., Hu, Y.: Medical Imaging and Computer-Aided Diagnosis. Springer (2020)

    Google Scholar 

  21. Vakharia, V.N., et al.: The effect of vascular segmentation methods on stereotactic trajectory planning for drug-resistant focal epilepsy: a retrospective cohort study. World Neurosurg. X 4, 100057 (2019)

    CrossRef  Google Scholar 

  22. Wang, D., Lu, Z., Xu, Y., Wang, Z., Santella, A., Bao, Z.: Cellular structure image classification with small targeted training samples. IEEE Access 7, 148967–148974 (2019)

    CrossRef  Google Scholar 

  23. Wei, H., et al.: Precise targeting of the globus pallidus internus with quantitative susceptibility mapping for deep brain stimulation surgery. J. Neurosurg. 133, 1605–1611 (2019)

    CrossRef  Google Scholar 

  24. Yuan, Y., Huang, W., Wang, X., Xu, H., Zuo, H., Su, R.: Automated accurate registration method between UAV image and google satellite map. Multimed. Tools Appl. 79, 16573–16591 (2019)

    CrossRef  Google Scholar 

  25. Zamzmi, G., Rajaraman, S., Antani, S.: Accelerating super-resolution and visual task analysis in medical images. Appl. Sci. 10, 4282 (2020)

    CrossRef  Google Scholar 

  26. Zhang, Y.D., Govindaraj, V.V., Tang, C., Zhu, W., Sun, J.: High performance multiple sclerosis classification by data augmentation and AlexNet transfer learning model. J. Med. Imaging Health Inform. 9, 2012–2021 (2019)

    CrossRef  Google Scholar 

  27. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34, 1797–1807 (2015)

    CrossRef  Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  29. Zhuang, J., Gao, M., Hasan, M.A.: Lighter U-net for segmenting white matter hyperintensities in MR images. In: Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dali Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, J., Wang, D. (2022). Geometrically Matched Multi-source Microscopic Image Synthesis Using Bidirectional Adversarial Networks. In: Su, R., Zhang, YD., Liu, H. (eds) Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021). MICAD 2021. Lecture Notes in Electrical Engineering, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-16-3880-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3880-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3879-4

  • Online ISBN: 978-981-16-3880-0

  • eBook Packages: EngineeringEngineering (R0)