Skip to main content

Microbial Biopesticides: Development and Application

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

Application of bio-based pesticides has been a growing trend in organic agriculture globally. The use of natural or genetically modified microorganisms as biopesticides can be considered as an effective and sustainable approach in disease control. The discovery and the development of a microbial biopesticide is a process of two major phases consisting experimental component and commercialization of the product. The experimental component begins with the field collection of the potential microbial samples and isolation of potential microbes and to evaluate their bio-control efficiency. Once a potential candidate microorganism is selected for the production of biopesticides, the candidate should be accurately identified and characterized. Genetic modifications can be done to improve the efficiency of the organism. The commercialization of the product includes mass production, formulation, and field testing and safety evaluation. Finally, a biopesticide can be registered and introduced to the market upon the completion of safety evaluation and regulatory approval. This chapter summarizes the discovery and development of biopesticides with special reference to nematophagous fungi and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali SRA, Kamarudin NH, Mslim R, Wahid MB (2013) Microbial approach in pests control. In: Wahid MB, May CY, Weng CK (eds) Further advances in oil palm research (2000-2010), vol 1. Malaysian Palm Oil Board, Bandar Baru Bangi, pp 407–456

    Google Scholar 

  • Aminuzzaman FM, Xie HY, Duan WJ, Sun BD, Liu XZ (2013) Isolation of nematophagous fungi from eggs and females of Meloidogyne spp. and evaluation of their biological control potential. Biocontrol Sci Tech 23(2):170–182

    Article  Google Scholar 

  • Arora NK, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 283–299

    Google Scholar 

  • Balaeș T, Tănase C (2016) Basidiomycetes as potential biocontrol agents against nematodes. Rom Biotechnol Lett 21(1):11185

    Google Scholar 

  • Barbosa BFF, Barbosa JPS, Santos JM, Barbosa JC, Negri MA, Soares PLM (2011) Eficacia do controle de nematoides em cana de acucar com produtos organicos e biologicos. In: Congresso Brasileiro de Fitossanidade, Jaboticabal. FUNEP, Jaboticabal, pp 64–67

    Google Scholar 

  • Besset-Manzoni Y, Joly P, Brutel A, Gerin F, Soudiere O, Langin T, Prigent-Combaret C (2019) Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS One 14(12):e0225655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carneiro RMDG, Gomes CB (1997) Encapsulacao do fungo Paecilomyces lilacinus em matrizes de alginato-argila e avaliacao da viabilidade dos conídios em duas temperaturas. Nematologia Brasileira 21:85–91

    Google Scholar 

  • Casas-Flores S, Herrera-Estrella A (2007) Antagonism of plant parasitic nematodes by fungi. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, The mycota, vol 4. Springer, Berlin, pp 147–158

    Chapter  Google Scholar 

  • Castro JMC, de Lima RD, Ferraz S, Neves JCL (2000) Capacidade de predacao de Arthrobotrys musiformis a fitonematoides. Summa Phytopathol 26:58–62

    Google Scholar 

  • Cheng XL, Liu CJ, Yao JW (2010) The current status, development trend and strategy of the bio-pesticide industry in China. Hubei Agric Sci 49:2287–2290

    Google Scholar 

  • Clarkson J, Payne T, Mead A, Whipps J (2002) Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. Plant Pathol 51(6):735–745

    Article  Google Scholar 

  • Cooke RC, Godfrey BES (1964) A key to the nematode-destroying fungi. Trans Br Mycol Soc 47(1):61–74

    Article  Google Scholar 

  • de Freitas Soares FE, Sufiate BL, de Queiroz JH (2018) Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric Nat Resour 52(1):1–8

    Google Scholar 

  • Devi PV, Ravinder T, Jaidev C (2005) Cost-effective production of Bacillus thuringiensis by solid state fermentation. J Invertebr Pathol 88(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhou XG, Wang J, Xu Y, Lu P (2015) Myrothecium verrucaria strain X-16, a novel parasitic fungus to Meloidogyne hapla. Biol Control 83:7–12

    Article  Google Scholar 

  • dos Santos MA, Ferraz S (2000) Detection, isolation and maintenance of some endoparasitic nematophagous fungi and in vitro evaluation of their pathogenicity. Nematologia Brasileira 24(2):183–191

    Google Scholar 

  • Falbo MK, Soccol VT, Sandini IE, Vicente VA, Robl D, Soccol CR (2013) Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitol Res 112(1):177–185

    Article  PubMed  Google Scholar 

  • Frederiks C, Wesseler JH (2019) A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Manag Sci 75(1):87–103

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, Moran-Diez ME (2016) What are microbial-based biopesticides. In: Glare TR, Moran-Diez ME (eds) Microbial-based biopesticides: methods and protocols. Humana Press, New Jersey, pp 1–9

    Chapter  Google Scholar 

  • Jiang X, Xiang M, Liu X (2017) Nematode-trapping fungi. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. Wiley, Hoboken, pp 963–974

    Chapter  Google Scholar 

  • Kala S, Sogan N, Agarwal A, Naik SN, Patanjali PK, Kumar J (2020) Biopesticides: formulations and delivery techniques. In: Egbuna C, Sawicka B (eds) Natural remedies for pest, disease and weed control, natural remedies for pest, disease and weed control. Academic Press, Amsterdam, pp 209–220

    Chapter  Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28(1):35–44

    Article  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57(1):1–12

    Article  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg W (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Khan MR, Walia RK (2020) Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett 43(5):409–412

    Article  Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10(86):19864–19873

    CAS  Google Scholar 

  • Li G, Zhang K, Xu J, Dong J, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1(3):212–233

    Article  CAS  PubMed  Google Scholar 

  • Linford MB, Oliveira JM (1937) The feeding of hollow-spear nematodes on other nematodes. Science 85(2203):295–297

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Llorca LV (1990) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36(8):530–537

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV, Jansson HB, Vicente JGM, Salinas J (2006) Nematophagous fungi as root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, Soil biology, vol 9. Springer, Berlin, pp 191–206

    Chapter  Google Scholar 

  • Martinelli PRP (2008) Studies on biological control of the citrus nematode in the State of Sao Paulo. Dissertation, College of Agricultural Sciences and Veterinary, State University of Sao Paulo, Brazil

    Google Scholar 

  • Martinelli PRP, Santos JM, Barbosa JC (2012) Efficacy of formulations containing five nematophagous fungi for the management of Pratylenchus jaehni in Citrus. Nematologia Brasileira 36:1–8

    Google Scholar 

  • Martinelli PRP, Soares PLM, dos Santos JM, da Silveira AJ (2015) Nematophagous fungi: formulation, mass production and application technology. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI, Wallingford, p 175

    Chapter  Google Scholar 

  • Mishra A, Arshi A, Mishra SP, Bala M (2019) Microbe-based biopesticide formulation: a tool for crop protection and sustainable agriculture development. In: Arora P (ed) Microbial technology for the welfare of society, microorganisms for sustainability, vol 17. Springer, Singapore, pp 125–145

    Chapter  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6(4):245–252

    Article  CAS  PubMed  Google Scholar 

  • Moosavi MR, Askary TH (2015) Nematophagous fungi-commercialization. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI, Wallingford, pp 187–202

    Chapter  Google Scholar 

  • Moosavi MR, Zare R, Zamanizadeh HR, Fatemy S (2011) Pathogenicity of Verticillium epiphytum isolates against Meloidogyne javanica. Int J Pest Manag 57:291–297

    Article  Google Scholar 

  • Nordbring-Hertz B (1977) Nematode-induced morphogenesis in the predacious fungus Arthrobotrys oligospora. Nematologica 23(4):443–451

    Article  Google Scholar 

  • Nordbring‐Hertz B, Jansson HB, Tunlid A (2001) Nematophagous fungi. In: Encylopedia of life sciences. Published on 2001 May 30. https://doi.org/10.1038/npg.els.0004293

    Chapter  Google Scholar 

  • Philip J (2002) Nematophagous fungi: guide by Philip Jacobs, BRIC-Version online. www.biological-research.com. Accessed Jun 2008

  • Powell KA, Jutsum AR (1993) Technical and commercial aspects of biocontrol products. Pestic Sci 37(4):315–321

    Article  Google Scholar 

  • Ravensberg W (2011) The development of microbial pest control products for control of arthropods: a critical evaluation and a roadmap to success. Dissertation, Wageningen University

    Google Scholar 

  • Schisler D, Slininger P (1997) Microbial selection strategies that enhance the likelihood of developing commercial biological control products. J Ind Microbiol Biotechnol 19(3):172–179

    Article  CAS  Google Scholar 

  • Singh R, Arora NK (2016) Bacterial formulations and delivery systems against pests in sustainable agro-food production. Food Sci 1:1–11

    Google Scholar 

  • Singh R, Kumar U (2015) Assessment of nematode distribution and yield losses in vegetable crops of Western Uttar Pradesh in India. Int J Sci Res 4(5):2812–2816

    Google Scholar 

  • Soares PLM (2006) Estudos do controle biologico de fitonematoides com fungos nematofagos. Tese de Doutorado, Faculdade de Ciencias Agrárias e Veterinarias. Universidade Estadual Paulista (FCAV-UNESP), Jaboticabal, 217 pp

    Google Scholar 

  • Spurr HW (1985) Bioassays: critical to biocontrol of plant disease. J Agric Entomol 2(1):117–122

    Google Scholar 

  • St Leger RJ, Screen S (2001) Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI, Wallingford, pp 219–237

    Google Scholar 

  • Tuininga AR, Miller JL, Morath SU, Daniels TJ, Falco RC, Marchese M, Sahabi S, Rosa D, Stafford KC (2014) Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods. J Med Entomol 46(3):557–565

    Article  Google Scholar 

  • Tunlid A, Johansson T, Nordbring-Hertz B (1991) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 137(6):1231–1240

    CAS  Google Scholar 

  • US Environmental Protection Agency, Regulating Pesticides (2008) What are biopesticides? http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.html. Accessed 25 Jan 2021

  • Velvis H, Kamp P (1996) Suppression of potato cyst nematode root penetration by the endoparasitic nematophagous fungus Hirsutella rhossiliensis. Eur J Plant Pathol 102:115–122

    Article  Google Scholar 

  • Verhaar MA, Hijwegen T, Zadoks JC (1998) Selection of Verticillium lecanii isolates with high potential for biocontrol of cucumber powdery mildew by means of components analysis at different humidity regimes. Biocontrol Sci Tech 8(4):465–477

    Article  Google Scholar 

  • Yang J, Tian B, Liang L, Zhang KQ (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Zachow C, Pirker H, Westendorf C, Tilcher R, Berg G (2009) The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents. Eur J Plant Pathol 125(3):367–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimuthu S. Manamgoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandakini, H.T., Manamgoda, D.S. (2021). Microbial Biopesticides: Development and Application. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_10

Download citation

Publish with us

Policies and ethics