Skip to main content

Symbiotic Native Microorganisms of Quinoa in the Bolivian Altiplano

  • Chapter
  • First Online:
Biology and Biotechnology of Quinoa

Abstract

Quinoa evolved in the highland area of Bolivia and other Andean countries in an extreme zone, with altitudes between 2800 and 4000 m above sea level, semiarid climates with low precipitation (250 mm/year), temperatures from −3 to 21 °C, soils with less than 1% organic matter, and a weak structure without aggregates. At the same time, quinoa co-evolved with symbiotic microorganisms, which provide different environmental services. Microorganisms were isolated from different parts of the quinoa plants, including grains, leaves, roots, and the rhizoplane and rhizosphere, which were molecularly identified. We mainly found filamentous fungi and bacteria of the Bacillus genus and other genera. These microorganisms were analyzed to understand the functional relationship with the plant, determining the production capacity of phytohormones, the recycling of nutrients, and the suppression of soil pathogens. The effect of the metabolites generated by symbiotic filamentous fungi was also analyzed. Taken together, the present study revealed that quinoa harbors a large number of diverse cultivable symbiotic bacteria and fungi that also serve as new sources of beneficial microorganisms and bioactive metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195–203

    CAS  Google Scholar 

  • Arévalo A (2015) Selección de bacterias género Bacillus solubilizadoras de Fósforo, adaptadas a la producción orgánica de quinua. Tesis de grado. Univerisidad Católica San Pablo, Cochabamba, Bolivia, 98 p

    Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Google Scholar 

  • Bae H, Roberts DP, Lim H, Strem MD, Park S, Ryu C, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. MPMI 24:336–351

    CAS  PubMed  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Techol 11:557–574

    Google Scholar 

  • Bonifacio A, Vargas A, Aroni G (2014) Mejoramiento de variedades de quinua para un contexto de mercado y cambio climático. Revista de Agricultura. Cochabamba, Bolivia. No. 54:29–34

    Google Scholar 

  • Cárdenas D, Garrido M, Bonilla R, Baldani L (2010) Aislamiento e identificación de cepas de Azospirillum sp. en pasto guinea (Panicum maximum Jacq.) del Valle del Cesar. Laboratorio de Microbiología de Suelos. Corporación Colombiana de Investigación Agropecuaria. Bogotá, Colombia

    Google Scholar 

  • CIP (Centro Internacional de la Papa) (2008) Protocolos de trabajo con bacterias PGPR. Lima-Perú, pp 47–50

    Google Scholar 

  • Dion P, Magallon C (2009) Curso práctico teórico de microbiología agrícola. Importancia de los microorganismos promotores de crecimiento vegetal para los pequeños productores de Bolivia. Cochabamba, Bolivia, 66 p

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–143

    CAS  Google Scholar 

  • Druzhinina I, Koptchinski A, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    CAS  PubMed  Google Scholar 

  • Fernández L, Zalba P, Gómez M, Sagardoy M (2005) Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera. Ciencia del suelo 23:31–37

    Google Scholar 

  • Garbeva P, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  PubMed  Google Scholar 

  • García de Salamone IE, Monzón de Asconegui MA (2008) Ecofisiología de la respuesta a la inoculación con Azospirillum en cultivos de cereales. In: Cassán F, Garcia de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 209–226

    Google Scholar 

  • Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (2014) Biotechnology and biology of Trichoderma. Elsevier, Poland. 650 p

    Google Scholar 

  • Gutierréz J, Felipez J, Navia M, Ortuño N (2018) Selección de bacterias fijadoras de nitrógeno en plantas de Chenopodium quinoa Willd. (Quinua). Revista de Agricultura. Cochabamba-Bolivia No. 58:7–14

    Google Scholar 

  • Handelsman J, Stab E (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma sp. Publish by The American Phytopathological Society (APS). Universidad de Cornell, Ginebra, NY 14456. www.apsnet.org

  • Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, DeWaard J (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96S99

    Google Scholar 

  • Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM (2004) cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyos-Carbajal L, Chaparro P, Abramsky M, Chet I, Orduz S (2008) Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de invernadero. Agron Colomb 26:451–458

    Google Scholar 

  • Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029

    PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y (2002) Plant growth promoting by Rhizosphera bacteria. In: Dekker M (ed) Plant roots. The hidden half. Estados Unidos de América, Nueva York, pp 869–887

    Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and sustainability of agricultural soils. Plant Soil 170:75–86

    CAS  Google Scholar 

  • Kloepper J, Ryu C, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Kolbert CP, Persing DH (1999) Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305

    CAS  PubMed  Google Scholar 

  • Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multiloci database of phylogenetic markers for Trichoderma and Hypocrea powered by sequence diagnosis and similarity search tools. Mycol Res 109:658–660

    PubMed  Google Scholar 

  • Kubicek C, Harman G (2002) Trichoderma & Gliocladium. Basic biology, taxonomy and genetics, vol 1. pp 1–271

    Google Scholar 

  • Lane DJ (1991) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    CAS  PubMed  Google Scholar 

  • Lozupone C, Knight R (2009) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578

    Google Scholar 

  • Lugtenberg B, Dekkers L, Bloemberg G (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Metha S, Nautiyal S (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013) Trichoderma: biology and applications. Editorial CABI. 344 p

    Google Scholar 

  • Mulaw BT, Kubicek CP, Druzhinina IS (2010) The rhizosphere of Coffea Arabica in its native Highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2:527–549

    CAS  Google Scholar 

  • Nautiyal C (1999) An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • NCBI Resource Coordinators (2017) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45:D12–D17

    Google Scholar 

  • Ortuño N, Castillo JA, Claros M, Navia O, Angulo M, Barja D, Gutiérrez C, Angulo V (2013) Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy 3(4):732–746. https://doi.org/10.3390/agronomy3040732

    Article  Google Scholar 

  • Ortuño N, Castillo JA, Miranda C, Claros M, Soto X (2016) The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Renewable agriculture and food systems. Cambridge University Press, pp 1–10. https://doi.org/10.1017/S1742170516000302

  • Pal K, Bhatt D, Chauchan S (2000) Plant growth promoting fluorescent Pseudomonas enhanced peanut growth, yield and nutrient uptake. National Research Center for Groundnut. Guajarat, India. No 5.Using Bioproducts Made with Native Microorganisms. Agron 3:732–746

    Google Scholar 

  • Peña H, Reyes I (2007) Aislamiento y Evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia. ISSN 0378-1844

    Google Scholar 

  • Rodríguez VJ (2002) Efecto antagónico y biocontrolador de algunos microorganismos saprofíticos contra Rhizoctonia solani un fitopatógeno causante del (Damping Off) en plantas de tomate. Tesis de grado para Magister en Microbiología

    Google Scholar 

  • Samuels GJ, Ismaiel A, Bon M-C, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966

    CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. https://doi.org/10.1007/s00253-010-2632-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10:e0117617

    PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190. https://doi.org/10.1016/S0929-1393(00)00094-9

    Article  Google Scholar 

  • Surette M, Sturtz A (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Sylvia D (1999) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors dedicate this chapter to Dr. Antonio Gandarillas (deceased June 20, 2020), a passionate researcher of quinoa and leader of the PROINPA Foundation. We are grateful to those who financed the research: the PROINPA Foundation, FONTAGRO-BID, McKnight Foundation, IP (Government Fund Holland), and CABOLQUI (Bolivian Chamber of Quinoa) and also to the Faculty of Agricultural and Livestock Sciences of the Universidad Mayor de San Simón (FCAP-UMSS).

The book editors are very thankful to Dr. Biswajit Saha, Center for Spanish Studies, School of Languages, Jawaharlal Nehru University, New Delhi, who helped in translating this chapter from Spanish to English.

The book editors would also like to thank Mr. Inderbir Singh Kochar, Director of Amity Institute of Languages, Amity University, for encouraging them to do this project.

Dr. Saha would like to express special thanks of gratitude to Prof. Dr. Ajit Varma, who gave him the golden opportunity to do this wonderful project of translation on the topic “Symbiosis Native Microorganisms of the Quinoa in the Bolivian Altiplano,” which also helped him to learn so many new things and increased his knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Ortuño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortuño, N., Castillo, J.A., Claros, M. (2021). Symbiotic Native Microorganisms of Quinoa in the Bolivian Altiplano. In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. https://doi.org/10.1007/978-981-16-3832-9_7

Download citation

Publish with us

Policies and ethics