Skip to main content

Advances of Biotechnology in Quinoa Production: A Global Perspective

  • Chapter
  • First Online:
Biology and Biotechnology of Quinoa

Abstract

In the last 30 years, quinoa started to be tested and produced in more than 100 countries outside the Andes, its region of origin. Nowadays, quinoa is found in more than 120 countries around the globe. During this time, biotechnology has become an important tool for different areas of research in quinoa, especially with the use of genetic markers. Biotechnology applications in this underutilized grain started in the United States, and their use has been more intensive in countries where quinoa was recently introduced. Biotechnology benefitted the quinoa sector with numerous studies on the species evolution, responses to abiotic stress, and assisted methods for faster genetic improvement. The recent quinoa genome description enables an exponential development with the complementation from novel areas, techniques, and tools such as omics and bioinformatics. Despite this, biotechnology applications in the Andean countries have been more limited due to economic and politic contexts. Nevertheless, biotechnology has been used to characterize the rich Andean germplasm, improve conservation systems, and develop bioinput. In this sense, since biotechnology should keep providing solutions for food security under healthy, sustainable, and reasonable principles, its use can be highly recommended. Biotechnology has the great potential to accelerate conventional breeding processes commonly applied to this crop, as well as to generate alternative options to enhance the production system and as model to improve other crops. With an integrative view and collaboration between different countries, biotechnology can provide tangible benefits to different stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International agreement for a fair and equitable share of benefits arising from the utilization of genetic resources.

References

  • Acevedo-Garcia J, Spencer D, Thieron H et al (2017) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15:367–378

    CAS  PubMed  Google Scholar 

  • Alandia G (2015) Quinoa: challenges for production in the Bolivian southern highlands. Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen, Denmark

    Google Scholar 

  • Alandia G, Rodriguez JP, Jacobsen S-E, Bazile D, Condori B (2020) Global expansion of quinoa and challenges for the Andean region. Glob Food Sec 26:100429. https://doi.org/10.1016/j.gfs.2020.100429

    Article  Google Scholar 

  • Altieri MA (2009) Agroecology, small farms, and food sovereignty. Mon Rev 61:102–113

    Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apaza Mamani V, Cáceres Sanizo G, Estrada Zuñiga R et al (2013) Catálogo de variedades comerciales de quinua en el Perú. Lima

    Google Scholar 

  • Aroni JC, Cayoja M, Laime MA (2008) Situación Actual al 2008 de la Quinua Real en el Altiplano Sur de Bolivia. FAUTAPO, La Paz

    Google Scholar 

  • Astudillo D, Aroni G (2012) Livelihoods of quinoa producers in southern Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods, Rome, pp 129–133

    Google Scholar 

  • Avitabile E (2015) Value chain analysis, social impact and food security. The case of quinoa in Bolivia. Universitàdegli Studi Roma Tre

    Google Scholar 

  • Bairagi S, Mohanty S (2017) Compliance costs for regulatory approval of c4 rice. AgBioForum 20:84–93

    Google Scholar 

  • Bazile D, Baudron F (2014) Dinámica de expansión mundial del cultivo de la quinua respecto a su alta biodiversidad. Estado del arte de la quinua en el mundo en 2013. FAO y CIRAD, Santiago de Chile, Montpellier, Francia

    Google Scholar 

  • Bazile D, Jacobsen S-E, Verniau A (2016) The global expansion of quinoa: trends and limits. Front Plant Sci 7:622. https://doi.org/10.3389/fpls.2016.00622

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedoya-Perales NS, Pumi G, Mujica A et al (2018) Quinoa expansion in Peru and its implications for land use management. Sustainability 10:532. https://doi.org/10.3390/su10020532

    Article  Google Scholar 

  • Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species. Brigham Young University, Provo, Utah (Ph.D. thesis)

    Google Scholar 

  • Bonifacio A (2004) Genetic variation in cultivated and wild Chenopodium species for quinoa breeding Brigham Young University, Provo, Utah (Ph. D. thesis)

    Google Scholar 

  • Bonifacio A, Gomez-Pando L, Rojas W (2013) Quinoa breeding and modern variety development. In: Bazile D, Bertero D, Nieto C (eds) State of the art report on quinoa around the world. FAO & CIRAD, Rome, pp 172–191

    Google Scholar 

  • Bonifacio A, Vargas A, Mamani M (2015) Uso de variedades de quinua y semilla de calidad. Informe Compendio 2011-2014. Fundación PROINPA, Cochabamba

    Google Scholar 

  • Bruno MC (2006) Chapter 4: A morphological approach to documenting the domestication of Chenopodium in the Andes. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, London, pp 32–45

    Google Scholar 

  • Butzer KW (1996) Biological transfer, agricultural change, and environmental implications of 1492. In: Duncan RR (ed) International germplasm transfer: past and present, vol 23. American Society of Agronomy, Inc. Crop Science Society of America, Inc., Madison, pp 1–29

    Google Scholar 

  • Čermák T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    PubMed  PubMed Central  Google Scholar 

  • Chen L, Hao L, Parry MAJ et al (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56:425–443

    PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Chevarria-Lazo M, Bazile D, Dessauw D et al (2015) Quinoa and the exchange of genetic resources: improving the regulation systems. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 83–105

    Google Scholar 

  • Christensen SA, Pratt DB, Pratt C et al (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Res 5:82–95

    CAS  Google Scholar 

  • Chumpitaz-Segovia C, Alvarado D, Ogata-Gutiérrez K et al (2020) Bioprospection of native psychrotolerant plant growth-promoting rhizobacteria from the Peruvian Andean Plateau soils associated with Chenopodium quinoa. Can J Microbiol 66(11):641–652. https://doi.org/10.1139/cjm-2020-0036

    Article  CAS  PubMed  Google Scholar 

  • Clouse JW, Adhikary D, Page JT et al (2016) The Amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.07.0062

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572

    CAS  Google Scholar 

  • Convention on Biological Diversity Secretariat (2020) Bolivia (Plurinational State of)—main details. Accessed June 11 2020

    Google Scholar 

  • Costa-Tártara SM, Manifesto MM, Bramardi SJ et al (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027–1038

    Google Scholar 

  • Cui X, Balcerzak M, Schernthaner J et al (2019) An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15:119. https://doi.org/10.1186/s13007-019-0500-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danial D, Parlevliet J, Almekinders C et al (2007) Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 153:385–396

    Google Scholar 

  • De la Vega G (1609) Capítulo IX: Del maíz y lo que llaman arroz, y otras semillas In: Primera Parte de los Comentarios Reales de los Incas, vol Libro Octavo de los Comentarios Reales de los Incas. Lisboa, p 418

    Google Scholar 

  • Del Castillo C, Winkel T, Mahy G et al (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian Altiplano as revealed by RAPD markers. Genet Res Crop Evol 54:897–905

    Google Scholar 

  • Deng W, Luo K, Li Z et al (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48

    CAS  Google Scholar 

  • Echeverría RG (1998) Agricultural research policy issues in Latin America: an overview. World Dev 26:1103–1111

    Google Scholar 

  • Eisa S, Koyro HW, Kogel KH et al (2005) Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant Cell Tissue Organ Cult 81:243–246

    Google Scholar 

  • Esfeld K, Uauy C, Tadele Z (2013) Application of TILLING for orphan crop improvement. In: Biotechnology of neglected and underutilized crops. Springer, pp 83–113

    Google Scholar 

  • Fairbanks DJ, Waldrigues A, Ruas CF et al (1993) Efficient characterization of biological diversity using field DNA extraction and RAPD markers. Braz J Genet 16:11–33

    Google Scholar 

  • Fan C, Xing Y, Mao H et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    CAS  PubMed  Google Scholar 

  • FAO (2020) WIEWS—World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture. http://www.fao.org/wiews/data/ex-situ-sdg-251/maps/en/. Accessed May 20 2020

  • Ficiciyan A, Loos J, Sievers-Glotzbach S et al (2018) More than yield: ecosystem services of traditional versus modern crop varieties revisited. Sustainability 10:2834. https://doi.org/10.3390/su10082834

    Article  Google Scholar 

  • Flintham JE, Börner A, Worland AJ et al (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25

    Google Scholar 

  • Francis G, Kerem Z, Makkar HP et al (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    CAS  PubMed  Google Scholar 

  • Fuentes F, Martínez E, De la Torre J et al (2006) Diversidad genética de germoplasma chileno de quinua (Chenopodium quinoa Willd.) usando marcadores de microsatélites SSR. In: Estrella AM, Batallas E, Peralta, Mazón N (eds) Resúmenes XII congreso internacional de cultivos andinos. 24 al 27 de julio de 2006. Quito, Ecuador

    Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV et al (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    CAS  Google Scholar 

  • Fundación PROINPA, Biotop SRL (2020) La Quinua Orgánica: Estrategia de Manejo Integrado del Cultivo. Quinua, Cochabamba, Bolivia

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhang X, Lan H et al (2015) The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biol 15:156. https://doi.org/10.1186/s12870-015-0515-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Long L, Tian X et al (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364. https://doi.org/10.3389/fpls.2017.01364

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963. https://doi.org/10.1038/s41596-018-0072-z

    Article  CAS  PubMed  Google Scholar 

  • Gobierno del Estado Plurinacional de Bolivia (2020) Plan Nacional de Respuesta y Rehabilitación para el Sector Agropecuario Ante los Efectos del Covid-19. FAO, FIDA, IICA, La Paz, Bolivia

    Google Scholar 

  • Golubov A (2016) CRISPR: bacteria immune system. Genome stability: from virus to human application. Elsevier Inc., pp 87–98

    Google Scholar 

  • Gomez-Montano L, Jumpponen A, Gonzales MA et al (2013) Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods? Soil Biol Biochem 65:50–59. https://doi.org/10.1016/j.soilbio.2013.04.005

    Article  CAS  Google Scholar 

  • Gomez-Pando LR (2015) Quinoa breeding. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley Blackwell, New Jersey, pp 87–108

    Google Scholar 

  • Gomez-Pando LR, Eguiluz-de la Barra A (2013) Developing genetic variability of quinoa (Chenopodium quinoa Willd.) with gamma radiation for use in breeding programs. Am J Plant Sci 4:349–355. https://doi.org/10.4236/ajps.2013.42046

    Article  Google Scholar 

  • Gomez-Pando LR, Aguilar-Castellanos E, Ibañez-Tremolada M (2019) Quinoa (Chenopodium quinoa Willd.) breeding. In: Advances in plant breeding strategies: cereals. Springer, pp 259–316

    Google Scholar 

  • González-Teuber M, Vilo C, Bascuñán-Godoy L (2017) Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genomics Data 11:109–112

    PubMed  PubMed Central  Google Scholar 

  • Gulisano A, Alves S, Neves Martins J et al (2019) Genetics and breeding of Lupinus mutabilis: an emerging protein crop. Front Plant Sci 10:1385. https://doi.org/10.3389/fpls.2019.01385

    Article  PubMed  PubMed Central  Google Scholar 

  • Holme IB, Gregersen PL, Brinch-Pedersen H (2019) Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci 10:1468. https://doi.org/10.3389/fpls.2019.01468

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong SY, Cheon KS, Yoo KO et al (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C album. Front Plant Sci 8:1–12

    Google Scholar 

  • Hossain MA, Barrow JJ, Shen Y et al (2015) Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression. J Cell Biochem 116:2435–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197:390–399

    Google Scholar 

  • Jacobsen SE (2012) What is wrong with the sustainability of quinoa production in Southern Bolivia–a reply to Winkel et al. (2012). J Agron Crop Sci 198:320–323

    Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN et al (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd). J Genet 87:39–51

    CAS  PubMed  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ et al (2017) The genome of Chenopodium quinoa. Nature 542(7641):307–312. https://doi.org/10.1038/nature21370. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature21370.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  • Jellen EN, Maughan PJ, Bertero D et al (2013) Prospects for quinoa (Chenopodium quinoa Willd.) improvement through biotechnology. In: Biotechnology of neglected and underutilized crops. Springer, pp 173–201

    Google Scholar 

  • Jia QJ, Zhang JJ, Westcott S et al (2009) GA-20 oxidase as a candidate for the semi dwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262

    CAS  PubMed  Google Scholar 

  • Johansen IE, Liu Y, Jørgensen B et al (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715. https://doi.org/10.1038/s41598-019-54126-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi DC, Sood S, Hosahatti R et al (2018) From zero to hero: the past, present and future of grain amaranth breeding. Theor Appl Genet 131:1807–1823. https://doi.org/10.1007/s00122-018-3138-y

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2012) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    PubMed  PubMed Central  Google Scholar 

  • Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750

    Google Scholar 

  • Kolano B, Gardunia BW, Michalska M et al (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome 54:710–717

    CAS  PubMed  Google Scholar 

  • Kolano B, Siwinska D, Gomez-Pando L et al (2012) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255

    CAS  Google Scholar 

  • Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    CAS  PubMed  Google Scholar 

  • Lawit SJ, Wych HM, Xu D et al (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    CAS  PubMed  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J et al (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    CAS  PubMed  Google Scholar 

  • Li C, Zong Y, Wang Y et al (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59. https://doi.org/10.1186/s13059-018-1443-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K et al (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightfoot DJ, Jarvis DE, Ramaraj T et al (2017) Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 15(1):74. https://doi.org/10.1186/s12915-017-0412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Zong Y, Xue C et al (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585. https://doi.org/10.1038/s41587-020-0455-x

    Article  CAS  PubMed  Google Scholar 

  • Lino V, Gandarillas E, Veliz A et al (2019) Manejo Orgánico de Plagas en Quinua Real: Efectos y Beneficios de la Estrategia PROINPA—BIOTOP. In: Ministerio de Agricultura I, Pontificia Universidad Católica de Chile, ODEPA (ed) Libro de Resúmenes VII Congreso Mundial de la Quinua y Otros Granos Andinos, Chile 2019. Santiago de Chile, p 73, 188

    Google Scholar 

  • Liu X, Wu S, Xu J et al (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7:292–302

    PubMed  PubMed Central  Google Scholar 

  • Llanos Machaca MY (2017) Bacterias solubilizadoras de fosfato del género bacillus en suelos de la provincia de el Collao (Puno) y su efecto en la germinación y crecimiento de quinua (Chenopodium quinoa Willd.) en condiciones de invernadero

    Google Scholar 

  • López-Marqués RL, Nørrevang AF, Ache P et al (2020) Prospects for the accelerated improvement of the resilient crop quinoa. J Exp Bot 71:5333–5347. https://doi.org/10.1093/jxb/eraa285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyngkjær MF, Newton AC, Atzema JL et al (2000) The Barley mlo-gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    CAS  PubMed  Google Scholar 

  • Maher MF, Nasti RA, Vollbrecht M et al (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38:84–89

    CAS  PubMed  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7(1):21. https://doi.org/10.1186/s13578-017-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Fortún J, Phillips DW, Jones HD (2017) Potential impact of genome editing in world agriculture. Emerg Top Life Sci 1:117–133

    PubMed  Google Scholar 

  • Mason SL, Stevens MR, Jellen EN et al (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    CAS  Google Scholar 

  • Matanguihan JB, Maughan PJ, Jellen EN et al (2015) Quinoa cytogenetics, molecular genetics and diversity. In: Murphy KM, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley-Blackwell, Hoboken, pp 109–123

    Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN et al (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    CAS  PubMed  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J et al (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839. https://doi.org/10.1139/g06-033

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Smith SM, Rojas-Beltrán JA et al (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125

    CAS  Google Scholar 

  • Mayes S, Massawe F, Alderson P et al (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63:1075–1079

    CAS  PubMed  Google Scholar 

  • Mestanza C, Riegel R, Vásquez SC et al (2018) Discovery of mutations in Chenopodium quinoa Willd. through EMS mutagenesis and mutation screening using pre-selection phenotypic data and next-generation sequencing. J Agric Sci 156:1196–1204

    CAS  Google Scholar 

  • Monna L (2002) Positional cloning of rice semi dwarfing gene, sd-1: rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    CAS  PubMed  Google Scholar 

  • Morillo Coronado A-C, Manjarres E-H, Morillo Coronado Y (2017) Molecular characterization of Chenopodium quinoa Willd. using inter-simple sequence repeat (ISSR) markers. Afr J Biotechnol 16:483–489

    Google Scholar 

  • Mundt CC (2018) Pyramiding for resistance durability: theory and practice. Phytopathology 108:792–802

    CAS  PubMed  Google Scholar 

  • Murphy KM, Bazile D, Kellogg J et al (2016) Development of a worldwide consortium on evolutionary participatory breeding in quinoa. Front Plant Sci 7:608. https://doi.org/10.3389/fpls.2016.00608

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Singh NK, Prasad M (2019) Chapter 1: Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. In: Kumar D (ed) Advances in genetics, vol 103. Academic, pp 1–38. https://doi.org/10.1016/bs.adgen.2019.01.001

    Chapter  Google Scholar 

  • Nina-Larico TP (2019) Efecto de la inoculación de bacterias PGPR Pseudomonas sp. Y Rhizobium sp. en el cultivo de la quinua (Chenopodium quinoa Willd.). Tesis de Grado. Universidad Nacional del Altiplano de Puno, Peru. Facultad de Ciencias Biológicas, p 87

    Google Scholar 

  • Nolasco O, Cruz W, Santa Cruz C et al (2013) Evaluation of the DNA polymorphism of six varieties of Chenopodium quinoa Willd, using AFLP. Biologist 11:277–286

    Google Scholar 

  • Núñez de Arco S (2015) Chapter 12: Quinoa’s calling. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley Blackwell, New Jersey, pp 211–226

    Google Scholar 

  • Ortuño N, Castillo JA, Claros M et al (2013) Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy 3:732–746

    Google Scholar 

  • Ortuño N, Claros M, Gutiérrez C et al (2014) Bacteria associated with the cultivation of quinoa in the Bolivian Altiplano and their biotechnological potential. Rev Agric 53:53–61

    Google Scholar 

  • Ortuño N, Castillo JA, Miranda C et al (2017) The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Renew Agric Food Syst 32:366–375

    Google Scholar 

  • Paco-Pérez V, Guzmán-Vega G-D (2019) Efecto de enmiendas orgánicas sobre las poblaciones microbianas de la rizosfera del cultivo de quinua (Chenopodium quinoa Willd.) en el altiplano Sur de Bolivia. J Selva Andina Biosphere 7:32–43

    Google Scholar 

  • Padulosi S, Hoeschle-Zeledon I (2004) Underutilized plant species: what are they? Leisa-Leusden 20:5–6

    Google Scholar 

  • Pandey A, Yarzábal LA (2019) Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 103:643–657

    CAS  PubMed  Google Scholar 

  • Pantoja Q, Juana A (2015) Uso de bacterias fijadoras de nitrogeno con diferentes niveles de abonamiento orgánico en el cultivo de quinua (Chenopodium quinoa Willd.), Comunidad Villa Pataraniatiplano central [Thesis]. http://repositorio.umsa.bo/xmlui/handle/123456789/5574

  • Pedersen WL, Leath S (1988) Pyramiding major genes for resistance to maintain residual effects. Annu Rev Phytopathol 26:369–378

    Google Scholar 

  • Peng J, Richards DE, Hartley NM et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Moury B, Caffier V et al (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci 8:1838. https://doi.org/10.3389/fpls.2017.01838

    Article  PubMed  PubMed Central  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planella MT, López ML, Bruno MC (2014) Capítulo 1.3: La Domesticación y Distribución Prehistórica. In: Didier B, Daniel B, Carlos N (eds) Estado del arte de la quinua en el mundo en 2013. FAO y CIRAD, Santiago de Chile y Montpellier, pp 33–48

    Google Scholar 

  • Rada RNV (2015) Determinación de la diversidad genética de 172 accesiones de la colección nacional de Chenopodium quinoa Willd. “Quinua” mediante marcadores microsatélites [Tesis Licenciada en Biología]. Universidad Ricardo Palma, Facultad de Ciencias Biológicas, Lima, p 97

    Google Scholar 

  • Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60:490–505

    CAS  PubMed  Google Scholar 

  • Reynolds J, Huber-Sannwald E, Herrick J (2008) La sustentabilidad de la producción de la quinua en el Altiplano sur de Bolivia: aplicación del paradigma de desarrollo de zonas secas. Rev Habitat 75:10–15

    Google Scholar 

  • Risi J, Rojas W, Pacheco M (2015) Producción y mercado de la quinua en Bolivia, vol IICA F01. IICA, La Paz

    Google Scholar 

  • Rocha JES (2011) Controle genético de caracteres agronómicos emquinoa (Chenopodium quinoa Willd.). Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, DF, Brazil (Ph.D. thesis)

    Google Scholar 

  • Rodríguez LA, Isla MT (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and highland accessions. J Plant Breed Crop Sci 1:210–216

    Google Scholar 

  • Rodríguez JP, Rahman H, Thushar S et al (2020) Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet 11:49. https://doi.org/10.3389/fgene.2020.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas W, Alandia G, Irigoyen J et al (2011) Quinoa: an ancient crop to contribute to world food security. Food and Agriculture Organization of the United Nations, Santiago de Chile

    Google Scholar 

  • Rojas W, Pinto M, Alanoca C et al (2015) Quinoa genetic resources and ex situ conservation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 56–82

    Google Scholar 

  • Rojas-Beltrán JA (2007) Mejoramiento genético asistido por técnicas modernas para el desarrollo competitivo de la cadena de la quinua (PIEN-Quinua). Sistema Boliviano de Tecnología Agropecuaria, Bolivia

    Google Scholar 

  • Rose Boom J, McMahon M, Ekanayake IJ (2006) Institutional innovation in agricultural research and extension systems in Latin America and the Caribbean. World Bank, Washington, DC

    Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF et al (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Google Scholar 

  • Ruiz R (2002) Micropropagación de germoplasma de quinua (Chenopodium quinoa Willd.). Universidad Nacional Agraria La Molina, Lima, Peru (Ph.D.thesis)

    Google Scholar 

  • Ruiz KB, Maldonado J, Biondi S et al (2019) RNA-seq analysis of salt-stressed versus non salt-stressed transcriptomes of Chenopodium quinoa L and race R49. Genes 10:1042. https://doi.org/10.3390/genes10121042

    Article  CAS  PubMed Central  Google Scholar 

  • Salazar J, de Lourdes TM, Gutierrez B et al (2019) Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: implications for conservation and breeding. Euphytica 215(3):60. https://doi.org/10.1007/s10681-019-2371-z

    Article  CAS  Google Scholar 

  • Sarethy IP, Srivastava N, Pan S (2019) Endophytes: the unmapped repository for natural products. In: Natural bio-active compounds. Springer, pp 41–70

    Google Scholar 

  • Schmöckel S, Lightfoot DJ, Razali R et al (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNA seq, and SNP analyses. Front Plant Sci 8:1023. https://doi.org/10.3389/fpls.2017.01023

    Article  PubMed  PubMed Central  Google Scholar 

  • Sederberg MC (2008) Physical mapping of ribosomal genes in new world members of the genus Chenopodium using fluorescence in situ hybridization. Brigham Young University, Provo

    Google Scholar 

  • Shahin H (2019) Callus formation and production of secondary metabolites by seedling explants of Chenopodium quinoa. Egypt J Bot 59:451–460

    Google Scholar 

  • Shanti ML, George MLC, Vera Cruz CM et al (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85:506–512

    CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Smyth SJ, Kerr WA, Phillips PW (2017) Biotechnology regulation and trade, vol 51. Springer

    Google Scholar 

  • Song X-JJ, Huang W, Shi M et al (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    CAS  PubMed  Google Scholar 

  • Soplín B (2009) Estudios preliminares para la inducción de callos a partir del cultivo in vitro de anteras de quinua (Chenopodium quinoa Willd.). Thesis. Facultad de Ciencias. Universidad Nacional Agraria La Molina, Lima

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semi dwarf (sd-1), ‘green revolution’ rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci 99:9043–9048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:80–92. https://doi.org/10.1016/j.ympev.2016.12.029

    Article  PubMed  Google Scholar 

  • Tadele Z (2019) Orphan crops: their importance and the urgency of improvement. Planta 250:677–694. https://doi.org/10.1007/s00425-019-03210-6

    Article  CAS  PubMed  Google Scholar 

  • Tamulonis JP (1989) In vitro callus production and shoot organogenesis in Chenopodium quinoa Willd. Colorado State University, Fort Collins (Ph.D. thesis)

    Google Scholar 

  • Telahigue D, Toumi L (2017) Influence of medium and growth regulators on callogenesis of quinoa (Chenopodium quinoa Willd.) and effect of hydrous stress induced by P.E.G 6000 on the callus. Hortic Biotechnol Res 3:01–09. https://doi.org/10.25081/hbr.2017.v3.3378

    Article  Google Scholar 

  • Troisi J, Di Fiore R, Pulvento C et al (2015) Saponins. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 267–277

    Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • Veramendi S, Cadima X, Pinto M et al (2014) Formation of the Chenopodium quinoa Willd. (quinoa) core collection in Bolivia with morphological and molecular data. Rev Agric 54:84–91

    Google Scholar 

  • Wang E, Wang J, Zhu X et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    CAS  PubMed  Google Scholar 

  • Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson H (1988) Allozyme variation and morphological relationships of Chenopodium hircinum (s.l.). Syst Bot 13(2):215–288. https://doi.org/10.2307/2419100

    Article  Google Scholar 

  • Winkel T, Bertero HD, Bommel P et al (2012) The sustainability of quinoa production in southern Bolivia: from misrepresentations to questionable solutions. Comments on Jacobsen (2011, J. Agron. Crop Sci. 197: 390–399). J Agron Crop Sci 198:314–319

    Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112:3570–3575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Hirakawa H, Oikawa T et al (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 23:535–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yong WTL, Henry ES, Abdullah JO (2010) Enhancers of agrobacterium-mediated transformation of Tibouchina semidecandra selected on the basis of GFP expression. Trop Life Sci Res 21:115–130

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang J, Huang J et al (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci 109:21534–21539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hao Z, Yin S et al (2020a) GreenCircRNA: a database for plant circRNAs that act as miRNA decoys. Database 2020:baaa039. https://doi.org/10.1093/database/baaa039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pribil M, Palmgren M et al (2020b) A CRISPR way for accelerating improvement of food crops. Nat Food 1:200–205

    Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    CAS  PubMed  Google Scholar 

  • Zou C, Chen A, Xiao L et al (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res 27:1327–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zsögön A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Google Scholar 

  • Zuo J, Niu Q-W, Frugis G et al (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to dedicate this chapter to the memory of Dr. Edson Gandarillas from Fundación PROINPA and Biotop SRL, who kindly facilitated Fig. 5.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Alandia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alandia, G., Rodríguez, J.P., Palmgren, M., Condori, B., López-Marqués, R.L. (2021). Advances of Biotechnology in Quinoa Production: A Global Perspective. In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. https://doi.org/10.1007/978-981-16-3832-9_5

Download citation

Publish with us

Policies and ethics