Skip to main content

Spinal Shock: Definition and Clinical Implications

  • Chapter
  • First Online:
Handbook of Spinal Cord Injuries and Related Disorders
  • 1321 Accesses

Abstract

The terms “spinal shock” and “neurogenic shock” are often both inappropriately or incorrectly used or confused with one another in the clinical setting. Although neurogenic shock refers to a hemodynamic pattern, spinal shock refers to the neurologic examination results that may be seen after an acute spinal cord injury. After an acute onset of spinal cord injury, there is a sudden loss of reflexes and muscle tone below the level of injury known as spinal shock. The term “spinal shock” was first introduced in 1840 by Marshall Hall, which suddenly showed a decrease in muscular irritability and no reflexes in a spinal paralysis. Spinal shock is pronounced only in primates, especially in humans, due to such a dominance of an inhibitory mechanism in the spinal cord. In general, the more severe the physiologic or anatomic transection of the spinal cord, the more profound the spinal shock. Spinal shock does not occur with slowly developing spinal cord diseases or injuries. The pattern of natural course following a spinal cord injury distinguishes between sudden onset and slow changes in the spinal cord. In the next days and weeks, motor reactions to external stimuli gradually reappear systematically. The definition of spinal shock and the pattern of reflex recovery or evolution and muscle tone recovery remain issues of debate and controversy. The lack of consensus on the clinical symptomatology defining the duration of spinal shock persists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson PP, Atkinson JLD. Spinal shock. Mayo Clin Proc. 1996;71:384–9.

    Article  CAS  PubMed  Google Scholar 

  • Bach-y-Rita P, Illis LS. Spinal shock: possible role of receptor plasticity and non synaptic transmission. Paraplegia. 1993;31:82–7.

    CAS  PubMed  Google Scholar 

  • Barnes CD, Schadt JC. Release of function in the spinal cord. Prog Neurobiol. 1979;12:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bastian HC. On the symptomatology of total transverse lesions of the spinal cord; with special reference to the condition of the various reflexes. Med Chir Trans. 1890;73:151–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunge RP, Puckett WR, Becerra JL, et al. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. In: Seil FJ, editor. Advances in neurology. New York: Raven Press Ltd; 1993.

    Google Scholar 

  • Calancie B, Broton JG, Klose KJ, et al. Evidence that alterations in presynaptic inhibition contribute to segmental hypo-and hyperexcitability after spinal cord injury in man. Electroencephalogr Clin Neurophysiol. 1993;89:177–86.

    Article  CAS  PubMed  Google Scholar 

  • Calancie B, Molano MR, Broton JG. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans. Clin Neurophysiol. 2004;115:2350–63.

    Article  PubMed  Google Scholar 

  • Christensen PB, Wermuth L, Hinge HH, et al. Clinical course and long-term prognosis of acute transverse myelopathy. Acta Neurol Scand. 1990;81:431–5.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijević MR, Nathan PW. Studies of spasticity in man: 3. Analysis of reflex activity evoked by noxious cutaneous stimulation. Brain. 1968;91:349–68.

    Article  PubMed  Google Scholar 

  • Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited: a four-phase model. Spinal Cord. 2004;42:383–95.

    Article  CAS  PubMed  Google Scholar 

  • Eckert MJ, Martin MJ. Trauma: spinal cord injury. Surg Clin North Am. 2017;97:1031–45.

    Article  PubMed  Google Scholar 

  • Fam B, Yalla SV. Vesicourethral dysfunction in spinal cord injury and its management. Semin Neurol. 1988;8:150–5.

    Article  CAS  PubMed  Google Scholar 

  • Guillain G, Barre JA. Etude anatomo-clinique de quinze cas de section totalle de la moelle. Annales de Médecine. 1917;2:178–222.

    Google Scholar 

  • Guttmann L. Studies on reflex activity of the isolated cord in spinal man. J Nerv Ment Dis. 1952;116:957–72.

    Article  CAS  PubMed  Google Scholar 

  • Guttmann L. Spinal shock and reflex behaviour in man. Paraplegia. 1970;8:100–16.

    CAS  PubMed  Google Scholar 

  • Guttmann L. Spinal cord injuries: comprehensive management and research. 2nd ed. Oxford: Blackwell Scientific Publications; 1976.

    Google Scholar 

  • Hall M. Second memoir on some principles of the pathology of the nervous system. Med Chir Trans. 1840;23:121–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall M. On the diseases and derangements of the nervous system: in their primary forms and in their modifications by age, sex, constitution, hereditary predisposition, excesses, general disorder, and organic disease. London: H. Baillière; 1841.

    Google Scholar 

  • Hiersemenzel LP, Curt A, Dietz V. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology. 2000;54:1574–82.

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth FW. Neurological diagnosis and the indications for treatment of paraplegia and tetraplegia, associated with fractures of the spine. Manit Med Rev. 1968;48:16–8.

    CAS  PubMed  Google Scholar 

  • Illis LS. The motor neuron surface and spinal shock. Mod Trends Neurol. 1967;4:53–68.

    CAS  PubMed  Google Scholar 

  • Ko HY, Ditunno JF, Graziani V, et al. The pattern of reflex recovery during spinal shock. Spinal Cord. 1999;37:402–9.

    Article  CAS  PubMed  Google Scholar 

  • Landau WM, Clare MH. The plantar reflex in man, with special reference to some conditions where the extensor response is unexpectedly absent. Brain. 1959;82:321–55.

    Article  CAS  PubMed  Google Scholar 

  • Leis AA, Kronenberg MF, Stĕtkárová I, et al. Spinal motoneuron excitability after acute spinal cord injury in humans. Neurology. 1996;47:231–7.

    Article  CAS  PubMed  Google Scholar 

  • Levi L, Wolf A, Belzberg H. Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery. 1993;33:1007–16.

    CAS  PubMed  Google Scholar 

  • Lloyd LK. New trends in urologic management of spinal cord injured patients. Cent Nerv Syst Trauma. 1986;3:3–12.

    Article  CAS  PubMed  Google Scholar 

  • McCouch GP, Austin GM, Liu CN, et al. Sprouting as a cause of spasticity. J Neurophysiol. 1958;21:205–16.

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM. Physiological aspects of synaptic plasticity: the Ia/motoneuron connection as a model. Adv Neurol. 1988;47:337–60.

    CAS  PubMed  Google Scholar 

  • Nacimiento W, Noth J. What, if anything, is spinal shock? Arch Neurol. 1999;56:1033–5.

    Article  CAS  PubMed  Google Scholar 

  • Petersen JA, Schubert M, Dietz V. The occurrence of the Babinski sign in complete spinal cord injury. J Neurol. 2010;257:38–43.

    Article  PubMed  Google Scholar 

  • Riddoch G. The reflex functions of the completely divided spinal cord in man, compared with those associated with less severe lesions. Brain. 1917;40:264–402.

    Article  Google Scholar 

  • Ruch TC. Evidence of the non-segmental character of spinal reflexes from an analysis of the cephalad effects of spinal transection (Schiff-Sherrington phenomenon). Am J Physiol-Legacy Content. 1935;114:457–67.

    Article  Google Scholar 

  • Schadt JC, Barnes CD. Motoneuron membrane changes associated with spinal shock and the Schiff-Sherrington phenomenon. Brain Res. 1980;201:373–283.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington C. The integrative action of the nervous system. London: Constable & Company LTD.; 1906.

    Google Scholar 

  • Silver JR. Spinal shock revisited: a four-phase model. Comment on spinal shock revisited: a four-phase model. Spinal Cord. 2005;43:450.

    Article  CAS  PubMed  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC. Glycine: an important potential component of spinal shock. Neurochem Res. 1993;18:887–92.

    Article  CAS  PubMed  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC. The role of glycine in spinal shock. J Spinal Cord Med. 1996;19:215–24.

    Article  PubMed  Google Scholar 

  • Stauffer ES. Diagnosis and prognosis of acute cervical spinal cord injury. Clin Orthop Relat Res. 1975;112:9–15.

    Article  Google Scholar 

  • Sullivan MP, Yalla SV. Detrusor contractility and compliance characteristics in adult male patients with obstructive and nonobstructive voiding dysfunction. J Urol. 1996;155:1995–2000.

    Article  CAS  PubMed  Google Scholar 

  • Tai Q, Goshgarian HG. Ultrastructural quantitative analysis of glutamatergic and GABAergic synaptic terminals in the phrenic nucleus after spinal cord injury. J Comp Neurol. 1996;372:343–55.

    Article  CAS  PubMed  Google Scholar 

  • Van Gijn J. The Babinski sign and the pyramidal syndrome. J Neurol Neurosurg Psychiatry. 1978;41:865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gijn J. The Babinski sign: the first hundred years. J Neurol. 1996;243:675–83.

    Article  PubMed  Google Scholar 

  • van Harreveld A. On spinal shock. Proc Natl Acad Sci U S A. 1940;26:65–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Munster CE, Weinstein HC, Uitdehaag BM, et al. The plantar reflex: additional value of stroking the lateral border of the foot to provoke an upgoing toe sign and the influence of experience. J Neurol. 2012;259:2424–8.

    Article  PubMed  Google Scholar 

  • Weaver RA, Landay WM, Higgins JF. Fusimotor function: part II. Evidence of fusimotor depression in human spinal shock. Arch Neurol. 1963;9:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DE, Ko HY, Graziani V, et al. Prognostic significance of the delayed plantar reflex following spinal cord injury. J Spinal Cord Med. 1997;20:207–11.

    Article  CAS  PubMed  Google Scholar 

  • White RJ, Likavec MJ. Spinal shock-spinal man. J Trauma. 1999;56:979–80.

    Article  Google Scholar 

  • Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24:807–43.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Buchanan LE, Nawoczenski DA, editors. Spinal cord injury-concepts and management approaches. Baltimore: Williams & Wilkins; 1987.

    Google Scholar 

  • Campbell WW, editor. DeJong’s the neurologic examination. 7th ed. New York: Wolters Kluwer Lippincott Williams & Wilkins; 1992.

    Google Scholar 

  • Fehlings MG, Vccaro AR, Roakye M, et al., editors. Essentials of spinal cord injury: basic research to clinical practice. New York: Thieme; 2013.

    Google Scholar 

  • Fulton JF, Keller AD. The sign of Babinski: a study of the evolution of cortical dominance in primates. Springfield: Charles C Thomas; 1932.

    Google Scholar 

  • Harrison P. Managing spinal injury: critical care. The international management of people with actual or suspected spinal cord injury in high dependency and intensive care unit. London: The Spinal Injury Association; 2000.

    Google Scholar 

  • Illis LS, editor. Spinal cord dysfunction: assessment. Oxford: Oxford University Press; 1988.

    Google Scholar 

  • Jallo J, Vaccaro AR, editors. Neurotrauma and critical care of the spine. 2nd ed. New York: Thieme; 2018.

    Google Scholar 

  • Vaccaro AR, Fehlings MG, Dvorak MF, editors. Spine and spinal cord trauma, evidence-based management. New York: Thieme Medical Publishers; 2011.

    Google Scholar 

  • Vanderah T, Gould DJ. Nolte’s the human brain. Philadelphia: Elsevier; 2016.

    Google Scholar 

  • Verhaagen J, McDonald JW III. Spinal cord injury. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology. 3rd series, vol. 109. London: Elsevier; 2012.

    Google Scholar 

  • Weaver LC, Polosa C, editors. Autonomic dysfunction after spinal cord injury. In: Progress in brain research. vol. 152. New York: Elsevier; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, HY., Huh, S. (2021). Spinal Shock: Definition and Clinical Implications. In: Handbook of Spinal Cord Injuries and Related Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-3679-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3679-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3678-3

  • Online ISBN: 978-981-16-3679-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics