Skip to main content

Efficient Iterative Linear Precoding Scheme for Downlink Massive MIMO Systems

  • Conference paper
  • First Online:
Ubiquitous Intelligent Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 243))

  • 635 Accesses

Abstract

Massive multiple-input multiple-output (MIMO) is the crucial technology to increase the 5G wireless communication system’s reliability and throughput. Massive MIMO uses a combination of a precoder and massive antennas at the base station (BS). A simple beamforming strategy such as zero-forcing (ZF) can be exploited in massive MIMO. ZF is a linear precoding technique usually adopted in low complexity massive MIMO systems. However, ZF precoding techniques involve matrix inversion, whose size increased with the user equipment. It increases the system’s overall computational complexity. In this paper, a modified weighted two-stage (WTS) algorithm is proposed to minimize that effect. The existing WTS algorithm used two symmetric half iterations and combined the iterations for faster convergence. It demands computation in the forward and the reverse order in each iteration. However, the proposed modification considers the present and past iterations, eliminating the reverse iterations and minimizing the complexity. The proposed change reduces the computational complexity by 17%. Simulation results show that modified WTS achieves the near-optimal capacity and similar bit error rate (BER) performance as ZF precoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bashar, Artificial intelligence based LTE MIMO antenna for 5th generation mobile networks. J. Artif. Intell. 2, 155–162 (2020)

    Google Scholar 

  2. C. Manikandan, P. Neelamegam, A. Srivishnu, K.G. Raj, A survey of MIMO transceiver designs in wireless communication systems. Int. J. Appl. Eng. Res. 10, 12073–12078 (2015)

    Google Scholar 

  3. L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: Benefits and challenges. IEEE J-STSP. 8, 742–758 (2014)

    Google Scholar 

  4. N. Hassan, X. Fernando, Massive MIMO wireless networks: an overview. Electronics 6, 1–29 (2017)

    Article  Google Scholar 

  5. F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30, 40–60 (2012)

    Article  Google Scholar 

  6. H. Prabhu, J. Rodrigues, O. Edfors, F. Rusek, Approximative matrix inverse computations for very-large MIMO and applications to linear precoding systems, in IEEE Wireless Communications and Networking Conference (IEEE, Shanghai, China, 2013), pp. 2710–2715

    Google Scholar 

  7. A. Mueller, A. Kammoun, E. Björnson, M. Debbah, Linear precoding based on polynomial expansion: reducing complexity in massive MIMO. EURASIP J. Wirel. Commun. Netw. 63 (2016)

    Google Scholar 

  8. J. Wu, Y. Hu, Y. Wang, An improved AOR-based precoding for massive MIMO systems, in 4th International Conference on Communication and Information Processing (2018), pp. 251–255

    Google Scholar 

  9. S. Berra, M.A. Albreem, M.S. Abed, A low complexity linear precoding method for massive MIMO, in International Conference on UK-China Emerging Technologies (IEEE, Glasgow, United Kingdom, 2020), pp. 1–4

    Google Scholar 

  10. X. Qiang, Y. Liu, Q. Feng, J. Liu, X. Ren, M. Jin, Approximative matrix ınversion based linear precoding for massive MIMO systems, in International Conference on Computing, Networking, and Communications (IEEE, Big Island, HI, USA, 2020), pp. 950–955

    Google Scholar 

  11. D. Subitha, J.M. Mathana, J.S. Leena Jasmine, R. Vani, Modified conjugate gradient algorithms for gram matrix ınversion of massive MIMO downlink linear precoding. Int. J. Recent Technol. Eng. 8 (2019)

    Google Scholar 

  12. T. Xie, L. Dai, X. Gao, X. Dai, Y. Zhao, Low-complexity SSOR-based precoding for massive MIMO systems. IEEE Commun. Lett. 20, 744–747 (2016)

    Article  Google Scholar 

  13. X. Gao, L. Dai, J. Zhang, S. Han, I. Chih-Lin, Capacity-approaching linear precoding with low-complexity for large-scale MIMO systems, in IEEE Ä°nternational Conference on Communications (IEEE, London, UK, 2015)

    Google Scholar 

  14. S. Hashima, O. Muta, Fast matrix inversion methods based on Chebyshev and Newton iterations for zero-forcing precoding in massive MIMO systems. EURASIP J. Wirel. Commun. Netw. 34, 1–12 (2020)

    Google Scholar 

  15. M.N. Boroujerdi, S. Haghighatshoar, G. Caire, Low-complexity statistically robust precoder/detector computation for massive MIMO systems. IEEE Trans. Wirel. Commun. 17, 6516–6530 (2018)

    Article  Google Scholar 

  16. C. Zhang, Y. Jing, Y. Huang, L. Yang, Performance analysis for massive MIMO downlink with low complexity approximate zero-forcing precoding. IEEE Trans. Commun. 66, 3848–3864 (2018)

    Article  Google Scholar 

  17. Q. Xie, H. Han, Z. Xu, Qi, W. Shen, A low-complexity linear precoding scheme based on SOR method for massive MIMO systems, in IEEE 81st Vehicular Technology Conference (IEEE, Glasgow, UK, 2015), pp. 1–5

    Google Scholar 

  18. Y. Liu, J. Liu, Q. Wu, Y. Zhang, M. Jin, A near-optimal iterative linear precoding with low complexity for massive MIMO systems. IEEE Commun. Lett. 23, 1105–1108 (2019)

    Article  Google Scholar 

  19. L. Dai, X. Gao, X. Su, S. Han, I. Chih-Lin, Z. Wang, Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multiuser large-scale MIMO systems. IEEE Trans. Veh. Technol. 64, 4839–4845 (2014)

    Article  Google Scholar 

  20. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next-generation wireless systems. IEEE Commun. Mag. 52, 186–195 (2014)

    Article  Google Scholar 

  21. M. Costa, Writing on dirty paper (corresp.). IEEE Trans. Inf. Theory. 29, 439–441 (1983)

    Google Scholar 

  22. A. Razi, D.J. Ryan, I.B. Collings, J. Yuan, Sum rates, rate allocation, and user scheduling for multiuser MIMO vector perturbation precoding. IEEE Trans. Wirel. Commun. 9, 356–365 (2010)

    Article  Google Scholar 

  23. J.H. Lee, Lattice precoding and pre-distorted constellation in a degraded broadcast channel with finite input alphabets. IEEE Trans. Commun. 58, 1315–1320 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Manikandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Augusta, A., Manikandan, C., Kumar, S.R., Narasimhan, K. (2022). Efficient Iterative Linear Precoding Scheme for Downlink Massive MIMO Systems. In: Karuppusamy, P., Perikos, I., García Márquez, F.P. (eds) Ubiquitous Intelligent Systems. Smart Innovation, Systems and Technologies, vol 243. Springer, Singapore. https://doi.org/10.1007/978-981-16-3675-2_49

Download citation

Publish with us

Policies and ethics