Skip to main content

Detection of Emphasis Words in Short Texts – A Context Aware Label Distribution Learning Approach

  • Conference paper
  • First Online:
Advanced Informatics for Computing Research (ICAICR 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1393))

  • 921 Accesses

Abstract

In multi-label classification problems, the predominant approach is to transform the problem into a single-label classification problem that can result in the affirmative classification of multiple labels of a single sample. However, for data such as image, video, or text segment - a realistic scenario is that of a distribution across multiple labels for any particular sample. This work adopts a label distribution approach to determine the segments of text that need emphasis. Additionally, it focuses on short text samples that make it challenging to understand the context and the author’s intent. A context-aware approach is proposed by employing a composite embedding, thereby obtaining contextual information while also focusing on fine-grained details about the text samples. The proposed model outperforms the selected baseline by a significant amount, rendering the amalgamation of the context-aware embeddings and the non-binary nature of the Label Distribution Learning fittest for estimating emphasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, M.L., Li, Y.K., Liu, X.Y., et al.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12, 191–202 (2018)

    Article  Google Scholar 

  2. Geng, X.: Label distribution learning. IEEE Trans. Knowl. Data Eng. 28(7), 1734–1748 (2016)

    Article  Google Scholar 

  3. Shen W., Zhao, K., Guo, Y., Yuille, A.L.: Label distribution learning forests. In: Advances in Neural Information Processing Systems, pp. 834–843 (2017)

    Google Scholar 

  4. Geng, X., Hou, P.: Pre-release prediction of crowd opinion on movies by label distribution learning. In: IJCAI, pp. 3511–3517 (2015)

    Google Scholar 

  5. Gao, B., Xing, C., Xie, C., Wu, J., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. Image Process. 26(6), 2825–2838 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, K., Kämäräinen, J.-K.: Learning with ambiguous label distribution for apparent age estimation. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 330–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_22

    Chapter  Google Scholar 

  7. Ling, M., Geng, X.: Soft video parsing by label distribution learning. Front. Comput. Sci. 13(2), 302–317 (2019)

    Article  Google Scholar 

  8. Xue, D., et al.: Personality recognition on social media with label distribution learning. IEEE Access 5, 13478–13488 (2017)

    Article  Google Scholar 

  9. Ardehaly, E.M., Culotta, A.: Mining the demographics of political sentiment from Twitter using learning from label proportions. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 733–738. IEEE (2017)

    Google Scholar 

  10. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  11. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language processing. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, pp. 15–18 (2019)

    Google Scholar 

  12. Okazaki, N.: CRFsuite: a Fast Implementation of Conditional Random Fields (CRFs) (2007). http://www.chokkan.org/software/crfsuite/

  13. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  14. Zhang, L., et al.: Emphasis detection for voice dialogue applications using multi-channel convolutional bidirectional long short-term memory network. In: 2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP), pp. 210–214. IEEE (2018)

    Google Scholar 

  15. Heba, A., Pellegrini, T., Jorquera, T., André-Obrecht, R., Lorré, J.-P.: Lexical emphasis detection in spoken French using F-Banks and neural networks. In: Camelin, N., Estève, Y., Martín-Vide, C. (eds.) SLSP 2017. LNCS (LNAI), vol. 10583, pp. 241–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68456-7_20

    Chapter  Google Scholar 

  16. Do, Q.T., Sakti, S., Nakamura, S.: Toward expressive speech translation: a unified sequence-to-sequence LSTMs approach for translating words and emphasis. In: INTERSPEECH, pp. 2640–2644 (2017)

    Google Scholar 

  17. Mass, Y., et al.: Word emphasis prediction for expressive text to speech. In: INTERSPEECH, pp. 2868–2872 (2018)

    Google Scholar 

  18. Ning, Y., et al.: Learning cross-lingual knowledge with multilingual BLSTM for emphasis detection with limited training data. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5615–5619. IEEE (2017)

    Google Scholar 

  19. Shirani, A., et al.: Learning emphasis selection for written text in visual media from crowd-sourced label distributions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1167–1172 (2019)

    Google Scholar 

  20. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL (2018)

    Google Scholar 

  21. Cer, D., et al.: Universal Sentence Encoder. arXiv preprint arXiv:1803.11175 (2018)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meghana, Das, B. (2021). Detection of Emphasis Words in Short Texts – A Context Aware Label Distribution Learning Approach. In: Luhach, A.K., Jat, D.S., Bin Ghazali, K.H., Gao, XZ., Lingras, P. (eds) Advanced Informatics for Computing Research. ICAICR 2020. Communications in Computer and Information Science, vol 1393. Springer, Singapore. https://doi.org/10.1007/978-981-16-3660-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3660-8_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3659-2

  • Online ISBN: 978-981-16-3660-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics