Skip to main content

Flexible Organic Field-Effect Transistors for Biomimetic Applications

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Abstract

Flexible electronics offers advantages over conventional electronics on this aspect with the possibility of fabrication on unconventional and biodegradable substrates. Organic field-effect transistors (OFETs) receive significant attention because of their potential use in flexible electronics, specifically for circuit and sensing applications. These devices can be used as a building block for applications in electronic skin (E-skin), health monitoring, and biomimetic applications due to flexibility or stretchability. However, during the operation, these devices are encountered with various electrical, mechanical, and thermal stimulations. Thus, for reliable operation in practical applications, OFETs must be operationally stable. In this chapter, firstly, the area of flexible electronics is introduced and the historical perspective along with various potential applications are summarized. The structure and operation of OFETs are discussed along with some crucial aspects. OFETs on various flexible substrates including plastic and paper are discussed. High performing OFET devices fabricated on unconventional substrates such as paper can pave the way toward biodegradable or green electronics. In addition, these devices have shown the potential to be used for real-time health monitoring and e-skin applications. OFETs with biodegradable gelatin dielectric had shown the possibility to be used as a breath rate analyzer. These devices will eventually be useful for low-cost self-health monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, G.: Cramming more components onto integrated circuits, 86, 82 85 (1998)

    Google Scholar 

  2. Akamatu, H., Inokuchi, H., Matsunaga, Y.: Electrical conductivity of the perylene-bromine complex. Nature 173, 168–169 (1954)

    Article  Google Scholar 

  3. Gutmam, F., Lyons, L.E.: Organic Semiconductors. Wiley, New York (1967)

    Google Scholar 

  4. McNeill, R., Siudak, R., Wardlaw, J.H., Weiss, D.E.: Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust. J. Chem. 16, 1056–1075 (1963)

    Google Scholar 

  5. Pope, M., Kallmann, H.P., Magnante, P.J.: Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042–2043 (1963)

    Article  Google Scholar 

  6. Little, W.A.: Superconductivity at room temperature. Sci. Am. 212, 21–27 (1965)

    Article  Google Scholar 

  7. Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)

    Article  Google Scholar 

  8. Chiang, C.K., Fincher, C.R., Jr., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098 (1977)

    Article  Google Scholar 

  9. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(Ch) X. J. Chem. Soc. Chem. Commun. 578–580 (1977)

    Google Scholar 

  10. Tang, C.W., VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987)

    Article  Google Scholar 

  11. Tang, C.W., VanSlyke, S.A., Chen, C.H.: Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989)

    Article  Google Scholar 

  12. Koezuka, H., Tsumura, A., Ando, T.: Field-effect transistor with polythiophene thin film. Synth. Met. 18, 699–704 (1987)

    Article  Google Scholar 

  13. Tsumura, A., Koezuka, H., Ando, T.: Polythiophene field-effect transistor: its characteristics and operation mechanism. Synth. Met. 25, 11–23 (1988)

    Article  Google Scholar 

  14. Garnier, F., Horowitz, G., Peng, X., Fichou, D.: An all-organic “soft” thin film transistor with very high carrier mobility. Adv. Mater. 2, 592–594 (1990)

    Article  Google Scholar 

  15. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Google Scholar 

  16. Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V.H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Article  Google Scholar 

  17. Meager, I., Nikolka, M., Schroeder, B.C., Nielsen, C.B., Planells, M., Bronstein, H., Rumer, J.W., James, D.I., Ashraf, R.S., Sadhanala, A.: Thieno [3, 2-B] thiophene flanked isoindigo polymers for high performance ambipolar ofet applications. Adv. Func. Mater. 24, 7109–7115 (2014)

    Google Scholar 

  18. Di, C.A., Zhang, F., Zhu, D.: Multi-functional integration of organic field-effect transistors (Ofets): advances and perspectives. Adv. Mater. 25, 313–330 (2013)

    Google Scholar 

  19. Khim, D., Han, H., Baeg, K.J., Kim, J., Kwak, S.W., Kim, D.Y., Noh, Y.Y.: Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits. Adv. Mater. 25, 4302–4308 (2013)

    Article  Google Scholar 

  20. Li, M., Mangalore, D.K., Zhao, J., Carpenter, J.H., Yan, H., Ade, H., Yan, H., Müllen, K., Blom, P.W.M., Pisula, W.: Integrated circuits based on conjugated polymer monolayer. Nat. Commun. 9, 1–8 (2018)

    Article  Google Scholar 

  21. Liu, J., Chen, S., Qian, D., Gautam, B., Yang, G., Zhao, J., Bergqvist, J., Zhang, F., Ma, W., Ade, H.: Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 1–7 (2016)

    Google Scholar 

  22. Chen, Y., Ye, P., Zhu, Z.G., Wang, X., Yang, L., Xu, X., Wu, X., Dong, T., Zhang, H., Hou, J.: Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Adv. Mater. 29, 1603154 (2017)

    Article  Google Scholar 

  23. Ng, T.N., Wong, W.S., Chabinyc, M.L., Sambandan, S., Street, R.A.: Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 191 (2008)

    Google Scholar 

  24. Rauch, T., Böberl, M., Tedde, S.F., Fürst, J., Kovalenko, M.V., Hesser, G., Lemmer, U., Heiss, W., Hayden, O.: Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photon. 3, 332 (2009)

    Google Scholar 

  25. Lamprecht, B., Thünauer, R., Ostermann, M., Jakopic, G., Leising, G.: Organic photodiodes on newspaper. Physica Status Solidi (a) 202, R50–R52 (2005)

    Google Scholar 

  26. Gaal, M., Gadermaier, C., Plank, H., Moderegger, E., Pogantsch, A., Leising, G., List, E.J.W.: Imprinted conjugated polymer laser. Adv. Mater. 15, 1165–1167 (2003)

    Article  Google Scholar 

  27. Myny, K., Steudel, S., Smout, S., Vicca, P., Furthner, F., Van Der Putten, B., Tripathi, A.K., Gelinck, G., Genoe, J., Dehaene, W.: Org. Electron 11, 1176–1179 (2010)

    Google Scholar 

  28. Dodabalapur, A., Bao, Z., Makhija, A., Laquindanum, J.G., Raju, V.R., Feng, Y., Katz, H.E., Rogers, J.: Organic smart pixels. Appl. Phys. Lett. 73, 142–144 (1998)

    Article  Google Scholar 

  29. Sirringhaus, H., Tessler, N., Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998)

    Article  Google Scholar 

  30. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  Google Scholar 

  31. Wu, H., Shevlin, S.A., Meng, Q., Guo, W., Meng, Y., Lu, K., Wei, Z., Guo, Z.: Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 26, 3338–3343 (2014)

    Article  Google Scholar 

  32. Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T.: Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009)

    Article  Google Scholar 

  33. Zang, Y., Huang, D., Di, C.A., Zhu, D.: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549–4555 (2016)

    Google Scholar 

  34. 3DPI Webpage https://3dprintingindustry.com/news/3d-printing-stock-pe-40-meet-mgi-23869/. Last accessed on 21 Oct 2020

  35. Hwang, D.K., Fuentes-Hernandez, C., Kim, J.B., Potscavage, W.J., Jr., Kippelen, B.: Flexible and stable solution-processed organic field-effect transistors. Org. Electron. 12, 1108–1113 (2011)

    Article  Google Scholar 

  36. Raghuwanshi, V., Bharti, D., Tiwari, S.P.: Flexible organic field-effect transistors with tips-pentacene crystals exhibiting high electrical stability upon bending. Org. Electron. 31, 177–182 (2016)

    Article  Google Scholar 

  37. Ding, L., Zhao, J., Huang, Y., Tang, W., Chen, S., Guo, X.: Flexible-blade coating of small molecule organic semiconductor for low voltage organic field effect transistor. IEEE Electron Device Lett. 38, 338–340 (2017)

    Article  Google Scholar 

  38. Yu, X., Zhou, N., Han, S., Lin, H., Buchholz, D.B., Yu, J., Chang, R.P.H., Marks, T.J., Facchetti, A.: Flexible spray-coated tips-pentacene organic thin-film transistors as ammonia gas sensors. J. Mater. Chem. C 1, 6532–6535 (2013)

    Article  Google Scholar 

  39. Bharti, D., Raghuwanshi, V., Varun, I., Mahato, A.K., Tiwari, S.P.: High performance and electro-mechanical stability in small molecule: polymer blend flexible organic field-effect transistors. IEEE Electron Device Lett. 37, 1215–1218 (2016)

    Article  Google Scholar 

  40. Onojima, N., Akiyama, N., Mori, Y., Sugai, T., Obata, S.: Small molecule/polymer blends prepared by environmentally-friendly process for mechanically-stable flexible organic field-effect transistors. Org. Electron. 78, 105597 (2020)

    Google Scholar 

  41. Raghuwanshi, V., Bharti, D., Mahato, A.K., Varun, I., Tiwari, S.P.: Operationally stable organic fets with bilayer dielectrics on low-cost flexible polyimide substrate. IEEE Trans. Electron Devices 66, 4915–4920 (2019)

    Article  Google Scholar 

  42. Wang, C.-Y., Fuentes-Hernandez, C., Liu, J.-C., Dindar, A., Choi, S., Youngblood, J.P., Moon, R.J., Kippelen, B.: Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Appl. Mater. Interfaces 7, 4804–4808 (2015)

    Article  Google Scholar 

  43. Raghuwanshi, V., Bharti, D., Mahato, A.K., Varun, I., Tiwari, S.P.: Solution-processed organic field-effect transistors with high performance and stability on paper substrates. ACS Appl. Mater. Interfaces 11, 8357–8364 (2019)

    Article  Google Scholar 

  44. Chang, J.-W., Wang, C.-G., Huang, C.-Y., Tsai, T.-D., Guo, T.-F., Wen, T.-C.: Chicken albumen dielectrics in organic field-effect transistors. Adv. Mater. 23, 4077–4081 (2011)

    Article  Google Scholar 

  45. Wang, C.-H., Hsieh, C.-Y., Hwang, J.-C.: Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 23, 1630–1634 (2011)

    Article  Google Scholar 

  46. Kim, Y.S., Jung, K.H., Lee, U.R., Kim, K.H., Hoang, M.H., Jin, J.-I., Choi, D.H.: High-mobility bio-organic field effect transistors with photoreactive Dnas as gate insulators. Appl. Phys. Lett. 96, 103307 (2010)

    Google Scholar 

  47. Hsieh, C.-Y., Hwang, J.-C., Chang, T.-H., Li, J.-Y., Chen, S.-H., Mao, L.-K., Tsai, L.-S., Chueh, Y.-L., Lyu, P.-C., Hsu, S.S.H.: Enhanced mobility of organic thin film transistors by water absorption of collagen hydrolysate gate dielectric. Appl. Phys. Lett. 103, 023303 (2013)

    Google Scholar 

  48. Ko, J., Nguyen, L.T.H., Surendran, A., Tan, B.Y., Ng, K.W., Leong, W.L.: Human hair keratin for biocompatible flexible and transient electronic devices. ACS Appl. Mater. Interfaces 9, 43004–43012 (2017)

    Article  Google Scholar 

  49. Zhu, B., Wang, H., Leow, W.R., Cai, Y., Loh, X.J., Han, M.-Y., Chen, X.: Silk fibroin for flexible electronic devices. Adv. Mater. 28, 4250–4265 (2016)

    Article  Google Scholar 

  50. Tsai, L.-S., Hwang, J.-C., Lee, C.-Y., Lin, Y.-T., Tsai, C.-L., Chang, T.-H., Chueh, Y.-L., Meng, H.-F.: Solution-based silk fibroin dielectric in N-Type C60 organic field-effect transistors: mobility enhancement by the pentacene interlayer. Appl. Phys. Lett. 103, 233304 (2013)

    Google Scholar 

  51. Lee, J.H., Kwak, H.W., Park, M.H., Hwang, J., Kim, J.W., Jang, H.W., Jin, H.-J., Lee, W.H.: Understanding hydroscopic properties of silk fibroin and its use as a gate-dielectric in organic field-effect transistors. Org. Electron. 59, 213–219 (2018)

    Article  Google Scholar 

  52. Lee, C., Chang, Y., Wang, L., Wang, Y.: Biodegradable materials for organic field-effect transistors on a paper substrate. IEEE Electron Device Lett. 40, 236–239 (2019)

    Article  Google Scholar 

  53. Mao, L.-K., Hwang, J.-C., Chang, T.-H., Hsieh, C.-Y., Tsai, L.-S., Chueh, Y.-L., Hsu, S.S.H., Lyu, P.-C., Liu, T.-J.: Pentacene organic thin-film transistors with solution-based Gelatin dielectric. Org. Electron. 14, 1170–1176 (2013)

    Article  Google Scholar 

  54. Mao, L.-K., Hwang, J.-C., Tsai, J.-C.: Operation voltage reduction and gain enhancement in organic Cmos inverters with the Ttc/Gelatin bilayer dielectric. Org. Electron. 16, 221–226 (2015)

    Article  Google Scholar 

  55. Raghuwanshi, V., Saxena, P., Rahi, S., Mahato, A.K., Varun, I., Tiwari, S.P.J.A.A.E.M.: Solution processed flexible organic field-effect transistors with biodegradable gelatin as dielectric layer: an approach towards biodegradable systems (2020)

    Google Scholar 

  56. Bettinger, C.J., Bao, Z.: Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Prakash Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghuwanshi, V., Tiwari, S.P. (2022). Flexible Organic Field-Effect Transistors for Biomimetic Applications. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics