Skip to main content

Blood Coagulation System and Carbon-Based Nanoengineering for Biomedical Application

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 1070 Accesses

Abstract

Carbon-based nanomaterials (CBNs) acquired unique physiochemical properties, due to which they were examined for various biomedical applications such as bio-imaging, bio-sensing, targeted drug delivery, etc. CBNs first experience the complex blood system during their intravenous administration for controlled delivery of drugs. In blood, CBNs triggers a cascade of events such as biocorona formation, complement activation, hemolysis, and thrombosis. During thrombosis, CBNs interact with blood coagulation system. Coagulation systems include platelets and clotting factors. The current book chapter is highlighting the impact of different CBNs on blood coagulation system with brief description of the various allotropes of carbon nanomaterials along with coagulation cascade mechanism. Encounter of CBNs with platelets induces its activation, aggregation, and adhesion properties whereas while interacting with coagulation cascade they mostly affect the intrinsic pathway rather than extrinsic pathways of coagulation. CBNs mediated blood coagulation system activation depends on its shape, size, and composition, which can be characterized using various sophisticated techniques such as flow cytometry, electron microscopy as well as platelet aggregometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandra, P., Das, D., Abdelwahab, A.A.J.: Biostructures: gold nanoparticles in molecular diagnostics and therapeutics 5(2) (2010)

    Google Scholar 

  2. Chandra, P., Noh, H.-B., Pallela, R., Shim, Y.-B.J.B.: & Bioelectronics. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor 70, 418–425 (2015)

    Google Scholar 

  3. Tiwari, J.N., Tiwari, R.N., Kim, K.S.: Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices 57(4), 724–803 (2012)

    Google Scholar 

  4. Arole, V., Munde, S.J.: Fabrication of nanomaterials by top-down and bottom-up approaches—an overview 1, 89–93 (2014)

    Google Scholar 

  5. Bharath, G., Madhu, R., Chen, S.-M., Veeramani, V., Balamurugan, A., Mangalaraj, D., Ponpandian, N.J.: Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide 3(7), 1360–1370 (2015)

    Google Scholar 

  6. Chandra, P., Segal, E.: Nanobiosensors for personalized and onsite biomedical diagnosis. Inst Eng Technol (2016)

    Google Scholar 

  7. Liu, Z., Tabakman, S., Welsher, K., Dai, H.J.N.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery 2(2), 85–120 (2009)

    Google Scholar 

  8. Chen, J., Chen, S., Zhao, X., Kuznetsova, L.V., Wong, S.S., Ojima, I.J.: Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery 130(49), 16778–16785 (2008)

    Google Scholar 

  9. Chen, B.: Surface functionalized carbon nanotubes for biomedical applications. In: Bio-inspired Nanomaterials and Applications: Nano Detection, Drug/Gene Delivery, Medical Diagnosis and Therapy, pp. 157–179. World Scientific (2015)

    Google Scholar 

  10. Cheon, Y.A., Bae, J.H., Chung, B.G.J.L.: Reduced graphene oxide nanosheet for chemo-photothermal therapy 32(11), 2731–2736 (2016)

    Google Scholar 

  11. Meng, H., Leong, W., Leong, K.W., Chen, C., Zhao, Y.J.B.: Walking the line: the fate of nanomaterials at biological barriers 174, 41–53 (2018)

    Google Scholar 

  12. Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Thompson, M.J..: Understanding biophysicochemical interactions at the nano–bio interface 8(7), 543 (2009)

    Google Scholar 

  13. Jenne, C., Urrutia, R., Kubes, P.J.I.: Platelets: bridging hemostasis, inflammation, and immunity 35(3), 254–261 (2013)

    Google Scholar 

  14. Machlus, K.R., Italiano, J.E.J.J.C.B.: The incredible journey: from megakaryocyte development to platelet formation 201(6), 785–796 (2013)

    Google Scholar 

  15. Geraldo, R., Sathler, P., Lourenço, A., Saito, M., Cabral, L., Rampelotto, P., Castro, H.C.: Platelets: still a therapeutical target for haemostatic disorders 15(10), 17901–17919 (2014)

    Google Scholar 

  16. Zufferey, A., Fontana, P., Reny, J.L., Nolli, S., Sanchez, J.C.: Platelet proteomics 31(2), 331–351 (2012)

    Google Scholar 

  17. Periayah, M.H., Halim, A.S., Saad, A.Z.M.: Research, s.c.: mechanism action of platelets and crucial blood coagulation pathways in hemostasis 11(4), 319 (2017)

    Google Scholar 

  18. Yadav, V.K., Singh, P.K., Sharma, D., Singh, S.K., Agarwal, V.J.: Molecules, diseases: mechanism underlying N-(3-oxo-dodecanoyl)-L-homoserine lactone mediated intracellular calcium mobilization in human platelets 79, 102340 (2019)

    Google Scholar 

  19. De Paoli Lacerda, S.H., Semberova, J., Holada, K., Simakova, O., Hudson, S.D., Simak, J.J.: Carbon nanotubes activate store-operated calcium entry in human blood platelets 5(7), 5808–5813 (2011)

    Google Scholar 

  20. Tortora, G.J., Derrickson, B.H.: Principles of anatomy and physiology, Wiley (2008)

    Google Scholar 

  21. Tortora, G.J., Derrickson B.H.: Principles of anatomy and physiology. Wiley (2018)

    Google Scholar 

  22. Revak, S.D., Cochrane, C.G., Griffin, J.H.: The binding and cleavage characteristics of human Hageman factor during contact activation: a comparison of normal plasma with plasmas deficient in factor XI, prekallikrein, or high molecular weight kininogen 59(6), 1167–1175 (1977)

    Google Scholar 

  23. Factor V Leiden and Inflammation Thrombosis. Thrombosis (2012). https://doi.org/10.1155/2012/594986

  24. Cha, C., Shin, S.R., Annabi, N., Dokmeci, M.R., Khademhosseini, A.J.: Carbon-based nanomaterials: multifunctional materials for biomedical engineering 7(4), 2891–2897 (2013)

    Google Scholar 

  25. Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015)

    Google Scholar 

  26. Mallakpour, S., Soltanian, S.J.R.A.: Surface functionalization of carbon nanotubes: fabrication and applications 6(111), 109916–109935 (2016)

    Google Scholar 

  27. Smith, A.T., LaChance, A.M., Zeng, S., Liu, B., Sun, L.: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites 1(1), 31–47 (2019)

    Google Scholar 

  28. Palmieri, V., Perini, G., De Spirito, M., Papi, M.J.: Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials 4(2), 273–290 (2019)

    Google Scholar 

  29. Bergonzo, P., Jackman, R.B., Loh, K.P., Swain, G.M., Williams, O.A.: Diamond electronics and biotechnology—fundamentals to applications V. Cambridge University Press: Cambridge, UK (2012)

    Google Scholar 

  30. Lien, Z.-Y., Hsu, T.-C., Liu, K.-K., Liao, W.-S., Hwang, K.-C., Chao, J.-I.J.B.: Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond 33(26), 6172–6185 (2012)

    Google Scholar 

  31. Bogdanović, G., Djordjević, A.J.S.A.C.L.: Carbon nanomaterials: Biologically active fullerene derivatives 144(3–4), 222–231 (2016)

    Google Scholar 

  32. Siqueira, J., Oliveira, O.N.: Carbon-based nanomaterials. In: Nanostructures, pp. 233–249. Elsevier (2017)

    Google Scholar 

  33. Isaacson, C.W., Kleber, M., Field, J.A.: Technology: quantitative analysis of fullerene nanomaterials in environmental systems: a critical review 43(17), 6463–6474 (2009)

    Google Scholar 

  34. Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials 4, 261 (2009)

    Google Scholar 

  35. Lategan, K., Fowler, J., Bayati, M., Fidalgo de Cortalezzi, M., Pool, E.J.N.: The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures 8(6), 388 (2018)

    Google Scholar 

  36. Wang, H.D., Niu, C.H., Yang, Q., Badea, I.J.N.: Study on protein conformation and adsorption behaviors in nanodiamond particle–protein complexes 22(14), 145703 (2011)

    Google Scholar 

  37. Li, S., Guo, Z., Zhang, Y., Xue, W., Liu, Z.J.A.: Interfaces: blood compatibility evaluations of fluorescent carbon dots 7(34), 19153–19162 (2015)

    Google Scholar 

  38. Peng, Z., Han, X., Li, S., Al-Youbi, A.O., Bashammakh, A.S., El-Shahawi, M.S., Leblanc, R.: Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine 343, 256–277 (2017)

    Google Scholar 

  39. Wang, Y., Hu, A.J.: Carbon quantum dots: synthesis, properties and applications 2(34), 6921–6939 (2014)

    Google Scholar 

  40. Boland, S., Hussain, S., Baeza‐Squiban, Baeza‐Squiban, A.: Nanobiotechnology: carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity 6(6), 641–652 (2014)

    Google Scholar 

  41. Shannahan, J.J.: The biocorona: a challenge for the biomedical application of nanoparticles 6(4), 345–353 (2017)

    Google Scholar 

  42. Lu, Q., Malinauskas, R.A.J.: Comparison of two platelet activation markers using flow cytometry after in vitro shear stress exposure of whole human blood 35(2), 137–144 (2011)

    Google Scholar 

  43. Radomski, A., Jurasz, P., Alonso‐Escolano, D., Drews, M., Morandi, M., Malinski, T., Radomski, M.W.: Nanoparticle‐induced platelet aggregation and vascular thrombosis 146(6), 882–893 (2005)

    Google Scholar 

  44. Guidetti, G.F., Consonni, A., Cipolla, L., Mustarelli, P., Balduini, C., Torti, M.: Biology, medicine: nanoparticles induce platelet activation in vitro through stimulation of canonical signalling pathways 8(8), 1329–1336 (2012)

    Google Scholar 

  45. Semberova, J., De Paoli Lacerda, S.H., Simakova, O., Holada, K., Gelderman, M.P., Simak, J.: Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors 9(9), 3312–3317 (2009)

    Google Scholar 

  46. Bihari, P., Holzer, M., Praetner, M., Fent, J., Lerchenberger, M., Reichel, C.A., Krombach, F.J.T.: Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation 269(2–3), 148–154 (2010)

    Google Scholar 

  47. Khandoga, A., Stampfl, A., Takenaka, S., Schulz, H., Radykewicz, R., Kreyling, W., Krombach, F.J.C.: Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo 109(10), 1320–1325 (2004)

    Google Scholar 

  48. Khandoga, A., Stoeger, T., Khandoga, A., Bihari, P., Karg, E., Ettehadieh, D.: Haemostasis: platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles 8(7), 1632–1640 (2010)

    Google Scholar 

  49. Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A., Fadeel, B.J.: Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation 1810(3), 361–373 (2011)

    Google Scholar 

  50. Chowdhury, S.M., Fang, J., Sitharaman, B.J.: Interaction of graphene nanoribbons with components of the blood vascular system 1(3) (2015)

    Google Scholar 

  51. Kumari, S., Singh, M.K., Singh, S.K., Grácio, J.J., Dash, D.J.N.: Nanodiamonds activate blood platelets and induce thromboembolism 9(3), 427–440 (2014)

    Google Scholar 

  52. Frame, M.D., Dewar, A.M., Mullick Chowdhury, S., Sitharaman, B.J.N.: Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice 8(8), 867–875 (2014)

    Google Scholar 

  53. Bottini, M., Rosato, N., Bottini, N.J.B.: PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead 12(10), 3381–3393 (2011)

    Google Scholar 

  54. Heister, E., Lamprecht, C., Neves, V., Tîlmaciu, C., Datas, L., Flahaut, E., Silva, S.R.: Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments 4(5), 2615–2626 (2010)

    Google Scholar 

  55. Singh, S.K., Singh, MK., Nayak, M.K., Kumari, S., Shrivastava, S., Grácio, J.J., Dash, D.J.: Thrombus inducing property of atomically thin graphene oxide sheets 5(6), 4987–4996 (2011)

    Google Scholar 

  56. Vaschenko, V., Samonin, V., Popov, V., Antonenkova, E., Nikonova, V., Vilyaninov, V.: Medicine: Effects of fullerene C^ sub 60^ nanocomposites on human platelet aggregation 152(5), 624 (2012)

    Google Scholar 

  57. Burke, A.R., Singh, R.N., Carroll, D.L., Owen, J.D., Kock, N.D., D’Agostino R. Jr., Torti, S.V.J.B.: Determinants of the thrombogenic potential of multiwalled carbon nanotubes 32(26), 5970–5978 (2011)

    Google Scholar 

  58. Meng, J., Cheng, X., Liu, J., Zhang, W., Li, X., Kong, H., Xu, H.J.P.O.: Effects of long and short carboxylated or laminated multiwalled carbon nanotubes on blood coagulation 7(7), e38995 (2012)

    Google Scholar 

  59. Vakhrusheva, T.V., Gusev, A.A., Gusev, S.A., Vlasova, I.I.: Albumin reduces thrombogenic potential of single-walled carbon nanotubes 221(2), 137–145 (2013)

    Google Scholar 

  60. Mona, J., Kuo, C.-J., Perevedentseva, E., Priezzhev, A., Cheng, C.-L.J.D., Materials, R.: Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time 39, 73–77 (2013)

    Google Scholar 

  61. Fent, J., Bihari, P., Vippola, M., Sarlin, E., Lakatos, S.J.T.: In vitro platelet activation, aggregation and platelet–granulocyte complex formation induced by surface modified single-walled carbon nanotubes 29(5), 1132–1139 (2015)

    Google Scholar 

  62. Roggers, R., Kanvinde, S., Boonsith, S., Oupický, D.J.A.P.: The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal 15(5), 1163–1171 (2014)

    Google Scholar 

  63. Njoroge, J.M., Yourick, J.J., Principato, M.A.: A flow cytometric analysis of macrophage–nanoparticle interactions in vitro: induction of altered Toll-like receptor expression 13, 8365 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panigrahi, A.R., Yadav, P., Beura, S.K., Singh, S.K. (2022). Blood Coagulation System and Carbon-Based Nanoengineering for Biomedical Application. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics