Skip to main content

Short Review on Silicone Rubber Based Composites as High Voltage Insulation Material

  • Conference paper
  • First Online:
Advances in Material Science and Engineering

Abstract

Silicone rubber (SiR) was established as one of the most favorable high voltage (HV) insulator for outdoor application. It possesses unlimited advantages such as undeniable heat resistance, lightweight and versatility in outside environment with outstanding electrical insulation behavior. The progress of SiR utilization as HV insulator was continuously advanced since its first establishment, seven decades ago. The manipulation of this functional macromolecules is diversified due to its customizable, manufacturability, easy processing, low-cost and modifiable. Extensive research has been performed all around the globe to discover the potential of SiR for various other applications. In this review, special attention to SiR types, modification using filler addition, SiR based nanocomposites, electrical insulation performance, and related issues on SiR as high voltage insulation materials were emphasized. This is significance to establish a standard guideline to optimize SiR potential for HV application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papailiou, K.O: Composite insulators are gaining ground-25 years of Swiss experience. In: 1999 IEEE Transmission and Distribution Conference, vol. 2, pp. 827–833 (1999)

    Google Scholar 

  2. Hall, J.F.: History and bibliography of polymeric insulators for outdoor applications. IEEE Trans. Power Delivery. 8(1), 376–385 (1993)

    Article  Google Scholar 

  3. Janeiro-Arocas, J., et al.: Creep analysis of silicone for podiatry applications. J. Mech. Behav. Biomed. Mater. 63, 456–469 (2016)

    Article  Google Scholar 

  4. Xu, R., et al.: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40, 1–11 (2015)

    Article  Google Scholar 

  5. Liu, W., He, G.: Storage life of silicone rubber sealing ring used in solid rocket motor. Chinese J. Aeronaut. 27(6), 1469–1476 (2014)

    Article  Google Scholar 

  6. Berahman, R., Raiati, M., Mehrabi Mazidi, M., Paran, S.M.R.: Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater. Des. 104, 333–345 (2016)

    Article  Google Scholar 

  7. Chang, W., Gorur, R.S.: Hydrophobicity of silicone rubber used for outdoor insulation. In: Proceedings of 1994 4th International Conference on Properties and Applications of Dielectric Materials (ICPADM), vol. 1, no. 1–2, pp. 266–269 (2007)

    Google Scholar 

  8. Arianpour, F., Farzaneh, M., Kulinich, M.A.: Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 265, 546–552 (2013)

    Article  Google Scholar 

  9. Janssen, H., Seifert, J.M., Karner, H.C.: Interfacial phenomena in composite high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 6(5), 651–659 (2003)

    Article  Google Scholar 

  10. Mowrer, N.R.: Polysiloxanes coatings innovations. In: Ameron International, pp. 1–16 (2003)

    Google Scholar 

  11. Harper, C.A.: Handbook of Plastics, Elastomers, and Composites, 4th edn. McGraw Hill Companies, Inc., New York (2002)

    Google Scholar 

  12. Papailiou, K.O., Schmuck, F.: Silicone Composite Insulators Materials, Design, Applications. Power Systems. Springer, Heidelberg (2013)

    Book  Google Scholar 

  13. Harper, C.A.: Handbook of Plastics Technologies, 2nd edn. McGraw Hill Companies, Inc., New York (2006)

    Google Scholar 

  14. Koshino, Y., Umeda, I., Ishiwari, M.: Deterioration of silicone rubber for polymer insulators by corona discharge and effect of fillers. In: Materials Science - 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, vol. 1, pp. 72–79 (1998)

    Google Scholar 

  15. Gorur, R.S., Cherney, E.A., Hackam, R.: Performance of polymeric insulating materials in salt-fog. IEEE Power Eng. Rev. PER-7(4), 58–59 (1987). https://doi.org/10.1109/MPER.1987.5527194

    Article  Google Scholar 

  16. Ghunem, R., Jayaram, S., Cherney, E.: Suppression of silicone rubber erosion by alumina trihydrate and silica fillers from dry-band arcing under DC. IEEE Trans. Dielectr. Electr. Insul. 22(1), 14–20 (2015)

    Article  Google Scholar 

  17. Ansorge, S., Schmuck, F., Papailiou, K.O.: Improved silicone rubbers for the use as housing material in composite insulators. IEEE Trans. Dielectr. Electr. Insul. 19(1), 209–217 (2012)

    Article  Google Scholar 

  18. Meyer, L., Jayaram, S., Cherney, E.A.: Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test. IEEE Trans. Dielectr. Electr. Insul. 11(4), 620–630 (2004)

    Article  Google Scholar 

  19. Tanaka, T.: Aging of polymeric and composite insulating materials aspects of interfacial performance in aging. IEEE Trans. Dielectr. Electr. Insul. 9(5), 704–716 (2002)

    Article  Google Scholar 

  20. Vas, J.V., Venkatesulu, B., Thomas, M.J.: Tracking and erosion of silicone rubber nanocomposites under DC voltages of both polarities. IEEE Trans. Dielectr. Electr. Insul. 19(1), 91–98 (2012)

    Article  Google Scholar 

  21. El-Hag, A.H., Simon, L.C., Jayaram, S.H., Cherney, E.A.: Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 13(1), 122–128 (2006)

    Article  Google Scholar 

  22. Venkatesulu, B., Thomas, M.J.: Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17(2), 615–624 (2010)

    Article  Google Scholar 

  23. Du, B.X., Ma, Z.L., Gao, Y., Han, T., Xia, Y.S.: Effects of nano filler on treeing phenomena of silicone rubber nanocomposites. In: 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena 2011, pp. 788–791 (2011)

    Google Scholar 

  24. Nazir, M.T., Phung, B.T., Hoffman, M.: Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2804–2815 (2016)

    Article  Google Scholar 

  25. Bian, S., Jayaram, S., Cherney, E.: Erosion resistance of electrospun silicone rubber nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20(1), 185–193 (2013)

    Article  Google Scholar 

  26. Krystian, L.C.: Influence of profile on the pollution performance of ceramic longrod insulators. Ukr. J. Tech. Elektrodynamika 1(2), 113–116 (2008)

    Google Scholar 

  27. Krivda, A., Hunt, S.M., Cash, G.A., George, G.A.: MALDI-TOF/MS characterisation of LMW PDMS in high voltage HTV silicone rubber insulators. In: 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, vol. 2, pp. 703–708 (2000)

    Google Scholar 

  28. Gutman, I., DernfalkA. : Pollution tests for polymeric insulators made of hydrophobicity transfer materials. IEEE Trans. Dielectr. Electr. Insul. 17(2), 384–393 (2010)

    Article  Google Scholar 

  29. Swift, D.A., Spellman, C., Haddad, A.: Hydrophobicity transfer from silicone rubber to adhering pollutants and its effect on insulator performance. IEEE Trans. Dielectr. Electr. Insul. 13(4), 820–829 (2006)

    Article  Google Scholar 

  30. Vazirinasab, E., Jafari, R., Momen, G.: Evaluation of atmospheric-pressure plasma parameters to achieve superhydrophobic and self-cleaning HTV silicone rubber surfaces via a single-step, eco-friendly approach. Surf. Coatings Technol. 375(July), 100–111 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for sponsoring this research. Thanks to COSSID, CERIA, FKE and FKP for technical support in completing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeefferie Abd Razak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazir Ali, N., Zainuddin, H., Abd Razak, J. (2021). Short Review on Silicone Rubber Based Composites as High Voltage Insulation Material. In: Awang, M., Emamian, S.S. (eds) Advances in Material Science and Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3641-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3641-7_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3640-0

  • Online ISBN: 978-981-16-3641-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics