Skip to main content

Approach II: Highly-Sensitive Open-Cell Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) Approaches for the Quantification of Rare Earth Elements in Natural Carbonates at Parts-Per-Billion Levels

  • Chapter
  • First Online:
Advanced and Applied Studies on Ultra-Trace Rare Earth Elements (REEs) in Carbonates Using SN-ICPMS and LA-ICPMS

Part of the book series: Springer Theses ((Springer Theses))

  • 193 Accesses

Abstract

In this chapter, a high-sensitivity approach to quantify ultra-trace concentrations of rare earth elements (REEs) in speleothem carbonates using open-cell laser ablation-sector field-inductively coupled plasma mass spectrometry (open-cell LA-SF-ICPMS) was developed. Specifically, open-cell LA in combination with a gas exchange device enabled sampling of large-scale carbonate specimens in an ambient environment. The use of a “jet” vacuum interface and the addition of small amounts of N2 gas allowed for a 20–40 fold sensitivity enhancement compared to the conventional interface configuration. Mass load effects, quantification capabilities and detection power were investigated in analyses of reference materials using various combinations of spot sizes and laser repetition rates. From 160 µm diameter circular laser spots and 10 Hz ablation frequency, limits of detection were in the low or sub-ng/g range for REEs. Little dependence of Ca normalized sensitivity factors from the amount of material introduced into the plasma was observed. Relative deviations of quantified concentrations from USGS MACS-3 preferred values were smaller than 12%. The analytical approach enabled the determination of REE concentration profiles at the single digit ng/g level. Application to a 15-cm piece stalagmite collected from East Timor revealed at least two abrupt elevations in light rare earth elements (LREEs) within a scanning distance of 8 mm. These anomaly regions extended over a distance of ≈200 µm and showed LREE abundances elevated by at least one order of magnitude. This high-resolution open-cell LA-SF-ICPMS method has the potential to be applied in micro-domain analyses of other natural carbonates, such as travertine, tufa, and flowstones. This is promising for a better understanding of earth and environmental sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi T, Hashimoto Y, Fu FF, Tsuno H, Tao H, Nakano Y (2004) Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies. Geochim Cosmochim Acta 68(10):2265–2273

    Article  Google Scholar 

  2. Baker J, Waight T, Ulfbeck D (2002) Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochim Cosmochim Acta 66(20):3635–3646

    Article  Google Scholar 

  3. Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D (2014) Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem 86(16):8142–8148

    Article  Google Scholar 

  4. Bourdin C, Douville E, Genty D (2011) Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave Southeastern France. Chem Geol 290(1–2):1–11

    Article  Google Scholar 

  5. Burger M, Gundlach-Graham A, Allner S, Schwarz G, Wang HA, Gyr L et al (2015) High-speed, high-resolution, multielemental LA-ICP-TOFMS imaging: Part II. Critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Anal Chem 87(16):8259–8267

    Google Scholar 

  6. Cruz FW Jr, Burns SJ, Jercinovic M, Karmann I, Sharp WD, Vuille M (2007) Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim Cosmochim Acta 71(9):2250–2263

    Article  Google Scholar 

  7. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593

    Article  Google Scholar 

  8. Fairchild IJ, Baker A, Borsato A, Frisia S, Hinton RW, McDermott F, Tooth AF (2001) Annual to sub-annual resolution of multiple trace-element trends in speleothems. J Geol Soc 158(5):831–841

    Article  Google Scholar 

  9. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75(1–4):105–153

    Article  Google Scholar 

  10. Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quatern Sci Rev 28(5–6):449–468

    Article  Google Scholar 

  11. Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66(1):45–62

    Article  Google Scholar 

  12. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626):1737–1739

    Article  Google Scholar 

  13. Fricker MB (2012) Design of ablation cells for LA-ICP-MS: from modeling to high spatial resolution analysis applications (Doctoral dissertation, ETH Zurich)

    Google Scholar 

  14. Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma; mass spectrometer (LAM-ICP-MS) in the earth sciences. Can Mineral 33(2):303–312

    Google Scholar 

  15. Grottoli AG, Matthews KA, Palardy JE, McDonough WF (2013) High resolution coral Cd measurements using LA-ICP-MS and ID-ICP-MS: calibration and interpretation. Chem Geol 356:151–159

    Article  Google Scholar 

  16. Günther D, Hattendorf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC Trends Anal Chem 24(3):255–265

    Article  Google Scholar 

  17. Hattendorf B (2002) Ion molecule reactions for the suppression of spectral interferences in elemental analysis by inductively coupled plasma mass spectrometry (Doctoral dissertation, ETH Zurich)

    Google Scholar 

  18. Hattendorf B, Günther D (2014) Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICPMS). In: Handbook of spectroscopy. Second, Enlarged Edition, pp 647–698

    Google Scholar 

  19. Hori M, Ishikawa T, Nagaishi K, You CF, Huang KF, Shen CC, Kano A (2014) Rare earth elements in a stalagmite from southwestern Japan: a potential proxy for chemical weathering. Geochem J 48(1):73–84

    Article  Google Scholar 

  20. Hu Z, Liu Y, Gao S, Liu W, Zhang W, Tong X et al (2012) Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom 27(9):1391–1399

    Article  Google Scholar 

  21. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338

    Article  Google Scholar 

  22. Jochum KP, Scholz D, Stoll B, Weis U, Wilson SA, Yang Q et al (2012) Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem Geol 318:31–44

    Article  Google Scholar 

  23. Kawabe I, Kitahara Y, Naito K (1991) Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-cenozoic limestones. Geochem J 25(1):31–44

    Article  Google Scholar 

  24. Kivel N, Potthast HD, Günther-Leopold I, Vanhaecke F, Günther D (2014) Modeling of the plasma extraction efficiency of an inductively coupled plasma-mass spectrometer interface using the direct simulation Monte Carlo method. Spectroc. Acta Pt B-Atom Spectr 93:34–40

    Google Scholar 

  25. Koch J, Günther D (2011) Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 65(5):155–162

    Article  Google Scholar 

  26. Kroslakova I, Günther D (2007) Elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry: evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass. J Anal At Spectrom 22(1):51–62

    Article  Google Scholar 

  27. Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11(9): 899–904

    Google Scholar 

  28. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quatern Sci Rev 23(7–8):901–918

    Article  Google Scholar 

  29. Mertz-Kraus R, Brachert TC, Jochum KP, Reuter M, Stoll B (2009) LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 273(1–2):25–40

    Article  Google Scholar 

  30. Richter DK, Gotte T, Niggemann S, Wurth G (2004) REE3+ and Mn2+ activated cathodoluminescence in lateglacial and Holocene stalagmites of central Europe: evidence for climatic processes? Holocene 14(5):759–768

    Article  Google Scholar 

  31. Scherer M, Seitz H (1980) Rare-earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis. Chem Geol 28:279–289

    Article  Google Scholar 

  32. Shen CC, Wu CC, Liu Y, Yu J, Chang CC, Lam DD et al (2011) Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry. Anal Chem 83(17):6842–6848

    Article  Google Scholar 

  33. Shen CC, Wu CC, Cheng H, Edwards RL, Hsieh YT, Gallet S et al (2012) High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim Cosmochim Acta 99:71–86

    Article  Google Scholar 

  34. Sholkovitz E, Shen GT (1995) The incorporation of rare earth elements in modern coral. Geochim Cosmochim Acta 59(13):2749–2756

    Article  Google Scholar 

  35. Siklósy Z, Demeny A, Vennemann TW, Pilet S, Kramers J, Leél-Őssy S et al (2009) Bronze Age volcanic event recorded in stalagmites by combined isotope and trace element studies. Rapid Commun Mass Sp 23(6):801–808

    Article  Google Scholar 

  36. Tabersky D, Nishiguchi K, Utani K, Ohata M, Dietiker R, Fricker MB et al (2013) Aerosol entrainment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air. J Anal At Spectrom 28(6):831–842

    Article  Google Scholar 

  37. Tan L, Shen CC, Cai Y, Lo L, Cheng H, An Z (2014) Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quatern Res 81(2):181–188

    Article  Google Scholar 

  38. Tanaka K, Takahashi Y, Shimizu H (2007) Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis. Anal Chim Acta 583(2):303–309

    Article  Google Scholar 

  39. Taylor SR, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Phil Trans R Soc Lond A 301(1461):381–399

    Article  Google Scholar 

  40. Treble P, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216(1–2):141–153

    Article  Google Scholar 

  41. Treble PC, Chappell J, Shelley JMG (2005) Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochim Cosmochim Acta 69(20):4855–4863

    Article  Google Scholar 

  42. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–2348

    Google Scholar 

  43. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

    Article  Google Scholar 

  44. White WB (2007) Cave sediments and paleoclimate. J Cave Karst Stud 69(1):76–93

    Google Scholar 

  45. Wu C-C, Burger M, Günther D, Shen C-C, Hattendorf B (2018) Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels. Anal Chim Acta 1018:54–61

    Article  Google Scholar 

  46. Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy3. Geochim Cosmochim Acta 68(9):2067–2080

    Article  Google Scholar 

  47. Zhou H, Wang Q, Zhao J, Zheng L, Guan H, Feng Y, Greig A (2008) Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 270(1–2):128–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Che Wu .

4.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 837 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, CC. (2021). Approach II: Highly-Sensitive Open-Cell Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) Approaches for the Quantification of Rare Earth Elements in Natural Carbonates at Parts-Per-Billion Levels. In: Advanced and Applied Studies on Ultra-Trace Rare Earth Elements (REEs) in Carbonates Using SN-ICPMS and LA-ICPMS. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-3619-6_4

Download citation

Publish with us

Policies and ethics