Skip to main content

Approach I: Rapid and Precise Measurements of Natural Carbonate Rare Earth Elements in Femtogram Quantities by Solution Nebulization-Inductively Coupled Plasma Mass Spectrometry (SN-ICPMS)

  • Chapter
  • First Online:
Advanced and Applied Studies on Ultra-Trace Rare Earth Elements (REEs) in Carbonates Using SN-ICPMS and LA-ICPMS

Part of the book series: Springer Theses ((Springer Theses))

  • 173 Accesses

Abstract

In this chapter, we present a rapid and precise method for measuring femtogram quantity rare earth element (REE) levels in natural carbonate samples using inductively coupled plasma sector field mass spectrometry, which does not require chemical separation steps. A desolvation nebulization system was used to effectively reduce polyatomic interference and enhance sensitivity. REE/Ca ratios are calculated directly from the intensities of the ion beams of 46Ca, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 160Gd, 159 Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, and 175Lu using external matrix-matched synthetic standards to correct for instrumental ratio drifting and mass discrimination. A routine measurement time of 3 min is typical for one sample containing 20–40 ppm Ca. Replicate measurements made on natural coral and foraminiferal samples with REE/Ca ratios of 2–242 nmol/mol show that external precisions of 1.9–6.5% (2 RSD) can be achieved with only 10–1000 fg of REEs in 10–20 μg of carbonate. Different sources for monthly resolved coral ultra-trace REE variability can be distinguished using this method. For natural slow growth-rate carbonate materials, such as sclerosponges, tufa, and speleothems, the high sample throughput, high precision, and high temporal resolution REE records that can be produced with this procedure have the potential to provide valuable time-series records to advance our understanding of paleoclimatic and paleoenvironmental dynamics on different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi T, Hashimoto Y, Fu FF, Tsuno H, Tao H, Nakano Y (2004) Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies1. Geochim Cosmochim Acta 68(10):2265–2273

    Article  Google Scholar 

  2. Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67(2):231–246

    Article  Google Scholar 

  3. Byrne RH, Sholkovitz ER (1996) Marine chemistry and geochemistry of the lanthanides. In: Gschneidner Jr KA, Eyring L (eds) Handbook of the physics and chemistry of rare earths, vol 23, pp 497–593

    Google Scholar 

  4. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT et al (1997) A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134(4):311–326

    Article  Google Scholar 

  5. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296(5854):214–219

    Article  Google Scholar 

  6. Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66(1):45–62

    Article  Google Scholar 

  7. Field MP, Sherrell RM (1998) Magnetic sector ICPMS with desolvating micronebulization: interference-free subpicogram determination of rare earth elements in natural samples. Anal Chem 70(21):4480–4486

    Article  Google Scholar 

  8. Green DRH, Cooper MJ, German CR, Wilson PA (2003) Optimization of an inductively coupled plasma–optical emission spectrometry method for the rapid determination of high‐precision Mg/Ca and Sr/Ca in foraminiferal calcite. Geochem Geophys Geosystems 4(6)

    Google Scholar 

  9. Haley BA, Klinkhammer GP, Mix AC (2005) Revisiting the rare earth elements in foraminiferal tests. Earth Planet Sci Lett 239(1–2):79–97

    Article  Google Scholar 

  10. Jarvis KE, Gray AL, McCurdy E (1989) Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion. J Anal At Spectrom 4(8):743–747

    Article  Google Scholar 

  11. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Article  Google Scholar 

  12. Kawabe I, Kitahara Y, Naito K (1991) Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochem J 25(1):31–44

    Article  Google Scholar 

  13. Lea DW, Boyle EA (1991) Barium in planktonic foraminifera. Geochim Cosmochim Acta 55(11):3321–3331

    Article  Google Scholar 

  14. McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem 21(1):169–200

    Google Scholar 

  15. Murphy KE, Long SE, Rearick MS, Ertas ÖS (2002) The accurate determination of potassium and calcium using isotope dilution inductively coupled “cold” plasma mass spectrometry. J Anal At Spectrom 17(5):469–477

    Article  Google Scholar 

  16. Nozaki Y, Lerche D, Alibo DS, Snidvongs A (2000) The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River Thailand. Geochim Cosmochim Acta 64(23):3983–3994

    Article  Google Scholar 

  17. Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73(2–4):285–298

    Article  Google Scholar 

  18. Raut NM, Huang LS, Lin KC, Aggarwal SK (2005) Uncertainty propagation through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry. Anal Chim Acta 530(1):91–103

    Article  Google Scholar 

  19. Richter DK, Gotte T, Niggemann S, Wurth G (2004) REE3+ and Mn2+ activated cathodoluminescence in late glacial and Holocene stalagmites of central Europe: evidence for climatic processes? Holocene 14(5):759–768

    Article  Google Scholar 

  20. Roberts NL, Piotrowski AM, McManus JF, Keigwin LD (2010) Synchronous deglacial overturning and water mass source changes. Science 327(5961):75–78

    Article  Google Scholar 

  21. Rosenthal Y, Field MP, Sherrell RM (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71(15):3248–3253

    Article  Google Scholar 

  22. Scherer M, Seitz H (1980) Rare-earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis. Chem Geol 28:279–289

    Article  Google Scholar 

  23. Shaw HF, Wasserburg GJ (1985) Sm-Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim Cosmochim Acta 49(2):503–518

    Article  Google Scholar 

  24. Shen CC, Lee T, Chen CY, Wang CH, Dai CF, Li LA (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60(20):3849–3858

    Article  Google Scholar 

  25. Shen CC, Hastings DW, Lee T, Chiu CH, Lee MY, Wei KY, Edwards RL (2001) High precision glacial–interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean Sea. Earth Planet Sci Lett 190(3–4):197–209

    Article  Google Scholar 

  26. Shen CC, Edwards RL, Cheng H, Dorale JA, Thomas RB, Moran SB et al (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185(3–4):165–178

    Article  Google Scholar 

  27. Shen CC, Chiu HY, Chiang HW, Chu MF, Wei KY, Steinke S et al (2007) High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chem Geol 236(3–4):339–349

    Article  Google Scholar 

  28. Shen CC, Li KS, Sieh K, Natawidjaja D, Cheng H, Wang X et al (2008) Variation of initial 230Th/232Th and limits of high precision U-Th dating of shallow-water corals. Geochim Cosmochim Acta 72(17):4201–4223

    Article  Google Scholar 

  29. Shen CC, Wu CC, Liu Y, Yu J, Chang CC, Lam DD et al (2011) Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry. Anal Chem 83(17):6842–6848

    Google Scholar 

  30. Sholkovitz E, Shen GT (1995) The incorporation of rare earth elements in modern coral. Geochim Cosmochim Acta 59(13):2749–2756

    Article  Google Scholar 

  31. Siklósy Z, Demeny A, Vennemann TW, Pilet S, Kramers J, Leél-Őssy S, Shen C-C, Hegner E (2009) Bronze Age volcanic event recorded in stalagmites by combined isotope and trace element studies. Rapid Commun Mass Spectrom 23(6):801–808

    Article  Google Scholar 

  32. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265

    Article  Google Scholar 

  33. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

    Article  Google Scholar 

  34. Wollenweber D, Straßburg S, Wünsch G (1999) Determination of Li, Na, Mg, K, Ca and Fe with ICP-MS using cold plasma conditions. Fresenius’ J Anal Chem 364(5):433–437

    Article  Google Scholar 

  35. Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochim Cosmochim Acta 68(9):2067–2080

    Article  Google Scholar 

  36. Yu J, Day J, Greaves M, Elderfield H (2005) Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP‐MS. Geochemistry, Geophysics, Geosystems, 6(8): Q08P01; DOI:10.1029/2005GC000964.

    Google Scholar 

  37. Zhang J, Nozaki Y (1996) Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim Cosmochim Acta 60(23):4631–4644

    Article  Google Scholar 

  38. Zhang XY, Arimoto R, An ZS (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102(D23):28041–28047

    Article  Google Scholar 

  39. Zhou H, Wang Q, Zhao J, Zheng L, Guan H, Feng Y, Greig A (2008) Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeogr Palaeoecol 270(1–2):128–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Che Wu .

2.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 809 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, CC. (2021). Approach I: Rapid and Precise Measurements of Natural Carbonate Rare Earth Elements in Femtogram Quantities by Solution Nebulization-Inductively Coupled Plasma Mass Spectrometry (SN-ICPMS). In: Advanced and Applied Studies on Ultra-Trace Rare Earth Elements (REEs) in Carbonates Using SN-ICPMS and LA-ICPMS. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-3619-6_2

Download citation

Publish with us

Policies and ethics