Skip to main content

Entomopathogenic Nematodes

  • Chapter
  • First Online:
Microbial Approaches for Insect Pest Management

Abstract

Entomopathogenic nematodes (EPN) are found in all inhabited continents except Antarctica (no report yet) and a range of ecologically diverse habitats, from cultivated fields to deserts. Steinernema and Heterorhabditis are the well studied genera which belong to the family Steinernematidae and Heterorhabditidae, associated with symbiotic bacteria Xenorhabdus and Photorhabdus respectively. As far as entomopathogenicity is concerned genus Oscheius is less studied, also having ability to kill the host insect due to the mutually associated with efficacious bacterial genera of Pseudomonas, Enterococcus and Serratia. The bacterial complex of these nematodes makes them a prominent mediator for the bio-management of many insect pests. Many studies have proven the active and main involvement of nematode’s bacterial partner by releasing secondary metabolites in causing septicemia and oenocytoids. Globally, both the genera, that is, Steinernema and Heterorhabditis, are represented by 100 and 16 species, respectively, while Oscheius is represented by 45 species, out of which 17 are from the Indian subcontinent. The information on EPN diversity is limited in India. EPN show high potential for plant protection and can play a major role in Integrated Pest Management (IPM) of insects.

Some species-specific EPN-based formulations, like Biovector, Sanoplant, Helix, Magnet and Entonem, are available in the developed countries, which are being used by the farmers. In India, only two formulations, that is, green commandos and soil commandos, were developed using exotic EPN species but these nematodes were not efficacious against insects probably because of their poor adaptability to Indian environmental conditions. These products were withdrawn from the market. Currently, the latest formulation developed by Multiplex Biotech Pvt. Ltd. is marketed in the name of Soldier (contains Heterorhabditis indica) and Bouncer (contains Steinernema carpocapsae) but these formulations are not much in use by the farmers. In most cases, there is no need for special application equipment. Most nematode species are compatible with pressurized, mist, electrostatic, fan and aerial sprayers. Hose-end sprayers pump sprayers, and watering cans are effective applicators as well. Nematodes can even be applied through irrigation systems in agricultural fields during crop growing seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasha (2020) Development of effective bio-formulation of entomopathogenic nematodes and the evaluation of their pathogenicity against white grub (Holotrichia serrata) infesting sugarcane and their field trials. Ph. D. Thesis. Chaudhary Charan Singh University, Meerut, pp 486

    Google Scholar 

  • Abate BA, Wingfield MJ, Slippers B, Hurley BP (2017) Commercialisation of entomopathogenic nematodes: should import regulations be revised? Biocontrol Sci Tech 27(2):149–168

    Google Scholar 

  • Adams BJ, Nguyen KB (2002) Taxonomy and systematics. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, NY, pp 1–34

    Google Scholar 

  • Akhurst R, Smith K (2002) Regulation and safety. In: Gaugler R (ed) Entomopathogenic nematology, vol 1. CABI, New York, pp 311–332

    Google Scholar 

  • Askary T, Ahmad MJ (2017) Entomopathogenic nematodes: mass production. Formul Appl 261:–86

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Menti H, Karanastasi (2010) Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes. J Econ Entomol 103(3):977–984

    PubMed  Google Scholar 

  • Bailey AS, Bertaglia M, Fraser IM, Sharma A, Douarin (2009) Integrated pest management portfolios in UK arable farming: results of farmer’s survey. Pest Manag Sci 65:1030–1039

    CAS  PubMed  Google Scholar 

  • Bastidas B, Portillo E, San-Blas E (2014) Size does matter: the life cycle of Steinernema spp. in micro-insect hosts. J Invertebr Pathol 121:46–55. https://doi.org/10.1016/j.jip.2014.06.010

    Article  PubMed  Google Scholar 

  • Bedding RA (1981) Low cost in vitro mass production of Neopectana and Heterorhabditis sp. for field control of insects pests. Nematologica 27:109–114

    Google Scholar 

  • Bedding RA (1988) Storage of entomopathogenic nematodes. WIPO Patent No. WO 88/08668

    Google Scholar 

  • Bedding RA, Molyneux AS (1982) Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 28:354–359

    Google Scholar 

  • Bellows TS Jr, Fisher TW (1996) Handbook of biological control. Academic Press, San Diego. CA

    Google Scholar 

  • Bhaskaran RKM, Sivakumar CV, Venugopal MS (1994) Biocontrol potential of entomopathogenic nematode in control of red hairy caterpillar, Amsacta albistriga of groundnut. Indian J Agric Sci 64:655–657

    Google Scholar 

  • Bhat AH (2019) Taxonomic diversity of entomopathogenic nematodes in Meerut Division. Ph. D. Thesis. Chaudhary Charan Singh University, Meerut, pp 1–442

    Google Scholar 

  • Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606

    Google Scholar 

  • Bovein P (1937) Some types of association between nematodes and insects. Videnskabelige Meddelelser Fra Dansk Naturhistorisk Forening, Kobenhavn 101:1–114

    Google Scholar 

  • CAB Reviews 2018 13, No. 058, http://www.cabi.org/cabreviews

  • Campbell JF, Gaugler R (1993) Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126:154–169

    Google Scholar 

  • Campbell JF, Gaugler R (1997) Inter-specific variation in entomopathogenic nematodes foraging strategy: dichotomy or variation along a continuum. Fundamental of Applied Nematology 20:393–398

    Google Scholar 

  • Campbell JF, Kaya HK (2002) Variation in entomopathogenic nematode (Steinernematidae and Heterorhabditidae) infective-stage jumping behaviour. Nematologica 4:471–482

    Google Scholar 

  • Campos-Herrera R, Barbercheck M, Hoy CW, Stock SP (2012) Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J Nematol 44:162–176

    PubMed  PubMed Central  Google Scholar 

  • Castillo JC, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27(12):537–547. https://doi.org/10.1016/j.pt.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46

    Google Scholar 

  • CPCRI (2016) Annual report 2015–2016. ICAR-Central Plantation Crops Research Institute, Kasaragod, p 210

    Google Scholar 

  • Daborn PJ, Waterfield N, Blight MA, Ffrench-Constant RH (2001) Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescence culture and during insect infection. J Bacteriol 183:5834–5839

    CAS  PubMed  PubMed Central  Google Scholar 

  • DACFW (2020) Annual report of Department of Agriculture, Cooperation and Farmer’s Welfare, Ministry of Agriculture, Govt. of India. http://agricoop.nic.in/sites/default/files/ACFW%20English%20%20Annual%20Report%202019-20

  • de Man JG (1880) Die einheimischen, frei in der reinen Erde und imsüssen Wasserleben den Nematoden. Tijdschrift van der Nederlands chedierkundige Vereeniging 5:1–104

    Google Scholar 

  • Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA (2012) Olfaction shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci U S A 109(35):E2324–E2333. PubMed: 22851767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon A (2003) Biological control of the large pine weevil, Hylobius abietis L., (Coleoptera: Curculionidae) using entomopathogenic nematodes. Dissertation, National University of Ireland–Maynooth, Maynooth, Ireland

    Google Scholar 

  • Dillon AB, Downes MJ, Ward D, Griffin CT (2007) Optimizing application of entomopathogenic nematodes to manage large pine weevil, Hylobius abietis L. (Coleoptera: Curculionidae) populations developing in pine stumps, Pinus sylvestris. Biol Control 40:253–263

    Google Scholar 

  • Divya K, Sankar M (2009) Entomopathogenic nematode in pest management. Indian J Sci Technol 2:53–60

    Google Scholar 

  • Dutky SR, Thompson J, Cantwell GE (1964) A technique for the mass propagation of the DD-136 nematode. J Insect Pathol 6:417–422

    Google Scholar 

  • Ebssa L, Borgemeister C, Semrau J, Poehling H (2004) Efficacy of entomopathogenic nematodes against western flower thrips Frankliniella occidentalis at different pupation depths. Nematology 6:495–505

    Google Scholar 

  • Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    CAS  PubMed  Google Scholar 

  • Ehlers R-U (2005) Forum on safety and regulation. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI, Wallingford, pp 107–114

    Google Scholar 

  • Endo BY, Nickle WR (1991) Ultrastructure of the intestinal epithelium, lumen and associated bacteria in Heterorhabditis bacteriophora. J Helminthol 58:202–212

    Google Scholar 

  • Feaster MA, Steinkraus DCS (1996) Inundative biological control of Helicoverpa zea (Lepidoptera: Noctuidae) with the entomopathogenic nematode Steinernema riobravis (Rhabditida: Steinernematidae). Biol Control 7:38–43

    Google Scholar 

  • Ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433–456

    CAS  PubMed  Google Scholar 

  • Forst S, Clarke D (2002) Bacteria-nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, London, pp 57–77

    Google Scholar 

  • Ganguly S, Anupama, Kumar A, Parmar BS (2008) Nemagel—a formulation of the Entomopathogenic nematode Steinernema thermophilum mitigating the shelf-life constraint of the tropics. Nematol Mediterranean 36:125–130

    Google Scholar 

  • Gaugler R, Bilgrami A (2004) Chapter 4: feeding behaviour. In: Gaugler R, Bilgrami A (eds) Nematode behaviour. CABI Publication, Wallingford, pp 2–3. https://doi.org/10.1079/9780851998183.0000

    Chapter  Google Scholar 

  • Gaugler R, Campbell JF, Selvan S, Lewis EE (1992) Large-scale inoculative releases of the entomopathogenic nematode Steinernema glaseri: assessment 50 years later. Biol Control 2:181–187

    Google Scholar 

  • Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, London, Boca Raton, pp 173–191

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20(8):338–343. https://doi.org/10.1016/s0167-7799(02)02021-8

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW (1931) The cultivation of a nematode parasite of an insect. Science 73:614–931

    CAS  PubMed  Google Scholar 

  • Gozel U, Gozel C (2016) Entomopathogenic nematodes in pest management. In: Integrated Pest management (IPM): environmentally sound Pest management, Chapter 3, p 56. https://doi.org/10.5772/63894

    Chapter  Google Scholar 

  • Grewal PS (2000) Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Manag Sci 56:401–406

    CAS  Google Scholar 

  • Grewal PS (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, UK, pp 265–288

    Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes, niche breadth for infection, establishment, and reproduction. J Thermal Biol 19:245–253

    Google Scholar 

  • Grewal PS, Martin WR, Miller RW, Lewis EE (1997) Suppression of plant- parasitic nematode populations in turfgrass by application of entomopathogenic nematodes. Biocontrol Sci Tech 7:393–399

    Google Scholar 

  • Gumus A, Karagoz M, Shapiro-Ilan D, Hazir S (2015) A novel approach to biocontrol: release of live insect hosts pre-infected with entomopathogenic nematodes. J Invertebrate Pathol 130:56–60

    Google Scholar 

  • Gupta P (2003) Entomopathogenic nematodes-work done at Allahabad agriculture institute, Allahabad. In: Hussaini SS, Rabindra RJ, Nagesh M (eds) Current status of research on entomopathogenic nematodes in India. Project Directorate of Biological Control, Bangalore, pp 161–166

    Google Scholar 

  • Hominick WM, Reid AP, Bohan DA, Briscoe BR (1997) Entomopathogenic nematodes : biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Sci Tech 6:317–332

    Google Scholar 

  • House HL, Welch HE, Cleugh TR (1965) A food medium of prepared dog biscuit for the mass production of the nematode DD-136 (Nematoda: Steinernematidae). Nature 206:847

    CAS  PubMed  Google Scholar 

  • Hugot J, Baujard P, Morand S (2001) Biodiversity in helminths and nematodes as a field study: an overview. Nematology 3:199–208

    Google Scholar 

  • Hussaini SS (2003) Progress of research work on entomopathogenic nematodes in India. In: Hussaini SS, Rabindra RJ, Nagesh M (eds) Current status of research on entomopathogenic nematodes in India. Project Directorate of Biological Control, Bangalore, India, pp 27–68

    Google Scholar 

  • Hussaini SS, Ansari MA, Ahmad W, Subbotin SA (2001) Identification of some Indian populations of Steinernema species (Nematoda) by RFLP analysis of ITS region of rDNA. Int J Nematol 11:73–76

    Google Scholar 

  • Hussaini SS, Kavitha J, Satya, Hussain MA (2003) Survival and pathogenicity of indigenous entomopathogenic nematodes in different UV protectants. Indian J Plant Protect 31:12–18

    Google Scholar 

  • Hussaini SS, Nagesh M, Dar M, Rajeshwari R (2005) Field evaluation of entomopathogenic nematodes against white grubs (Coleoptera: Scarabaeidae) on turf grass in Srinagar. J Plant Protect Sci 13(1):190–193

    Google Scholar 

  • Ishibashi N (1993) Integrated control of insects pest by Steinernema carpocapsae. In: Bedding R, Akhurst R, Kaya HK (eds) Nematodes and biological control of insects. CSIRO, East Melbourne, Australia, pp 105–113

    Google Scholar 

  • Ishibashi N, Choi DR (1991) Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. J Nematol 23:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob JP, Devraj R, Natrajan R (2007) Outbreak of the invasive gall inducing wasp Leptocybe invasa on eucalypts in India. Invasives 8:4

    Google Scholar 

  • Johnson SN, Mitchell C, McNicol JW, Thompson J, Karley AJ (2013) Downstairs drivers - root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients. J Anim Ecol 82:1021–1030

    PubMed  Google Scholar 

  • Kaya H, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Google Scholar 

  • Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, FL, pp 195–214

    Google Scholar 

  • Koppenhöfer AM, Fuzy EM (2003a) Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. J Invertebrate Pathol 83:139–148

    Google Scholar 

  • Koppenhöfer AM, Fuzy EM (2003b) Steinernema scarabaei for the control of white grubs. Biol Control 28:47–59

    Google Scholar 

  • Koppenhöfer AM, Kaya HK (1997) Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol Control 8:131–137

    Google Scholar 

  • Koppenhöfer AM, Grewal PS, Kaya HK (2000) Synergism of imidacloprid and entomopathogenic nematodes against white grub: the mechanism. Entomol Exp Appl 94:283–294

    Google Scholar 

  • Koppenhofer AN, Cowles RS, Cowles EA, Fuzy EM, Baumgartner L (2002) Comparison of neonicotinoid insecticidesas synergists for entomopathogenic nematodes. Biol Control 24:90–97

    CAS  Google Scholar 

  • Krishnayya PV, Grewal PS (2002) Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Sci Tech 12:259–266

    Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goette MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebrate Pathol 132:1–41

    CAS  Google Scholar 

  • Lello ER, Patel MN, Mathews GA, Wright DJ (1996) Application technology for entomopathogenic nematodes against foliar pests. Crop Protect 15:567–574

    Google Scholar 

  • Martens EC, Heungens K, Goodrich-Blair H (2003) Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J Bacteriol 185:3147–3154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathasoliya JB, Maghodia AB, Vyas RV (2004) Efficacy of Steinernema riobrave against Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae) on potato. Indian J Nematol 34(2):177–189

    Google Scholar 

  • Maupas E (1919) Essaisd'hybridation chez des nématodes. Bull Biol Fr Belg 52:466–498

    Google Scholar 

  • Morales-Ramos JA, Tedders WL, Dean CB, ShapiroIlan DI, Rojas MG (2013) Apparatus for packaging arthropods infected with entomopathogenic nematodes. U.S. Patent No. USA. vol. 8, pp. 505–236

    Google Scholar 

  • Mráček Z, Bednarek A (1991) The morphology of lateral fields of infective juveniles of entomogenous nematodes of the family Steinernematidae (Rhabditida). Nematologica 37:63–71

    Google Scholar 

  • Muniappan R, Shepard BM, Watson GW, Carner GR (2008) First report of the papaya mealybug, Paracoccusm arginatus (Hemiptera: Pseudococcideae), Indonesia and India. J Agric Urban Entomol 25:37–40

    Google Scholar 

  • Nguyen KB, Smart GC (1990) Steinernema scapterisci n. sp. (Steinernematidae: Nematoda). J Nematol 22:187–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimatsu T, Jackson JJ (1998) Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 91(2):410–418

    CAS  PubMed  Google Scholar 

  • Poinar GO (1990) Biology and taxonomy of steinernematidae and heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 23–62

    Google Scholar 

  • Poinar GO, Thomas GM (1966) Significance of Achromobacter nematophilus (Achromobactericeae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitologica 56:385–390

    Google Scholar 

  • Poinar GO (1979) Nematodes for biological control of insects. CRC Press, Boca Raton, p 277

    Google Scholar 

  • Pye AE, Burman M (1977) Pathogenicity of the nematode Neoaplectana corpocapsae (Rhabditida: Steinernematidae) and certain microorganisms towards the large pine weevil, Hylobius abietis (Coleoptera, Curculionidae). Annoles Entomolgici Fennici 43:115–119

    Google Scholar 

  • Rathee M, Dalal P (2018) Emerging insect pests in Indian agriculture. Indian J Entomol 80(2):267–281. https://doi.org/10.5958/0974-8172.2018.00043.3

    Article  Google Scholar 

  • Sathiamma B, Nair CPR, Koshy PK (1998) Outbreak of nut a infesting eriophyid mite (Eryophyes guerreronis (K)) in coconut plantation in India. Indian Coconut J 29:1–3

    Google Scholar 

  • Schroer S, Ehlers R-U (2005) Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol Control 33:81–86

    Google Scholar 

  • Segal D, Glazer I (2000) Genetics for improving biological control agents: the case of entomopathogenic nematodes. Crop Prot 19:685–689

    Google Scholar 

  • Selvan S, Gaugler R, Lewis EE (1993) Biochemical energy reserves of entomopathogenic nematodes. J Parasitol 79:167–172

    CAS  Google Scholar 

  • Shapiro-Ilan DI, Gaugler R (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. J Indust Microbiol Biotechnol 28:137–146

    CAS  Google Scholar 

  • Shapiro-Ilan DI, Grewal PS (2008) Entomopathogenic nematodes and insect management. In: Capinera JL (ed) Encyclopedia of entomology, vol 2. Springer, Dordrecht, pp 1336–1340

    Google Scholar 

  • Shapiro-Ilan DI, Lewis EE, Behle RW, McGuire MR (2001) Formulation of entomopathogenic nematode-infected cadavers. J Invertebrate Pathol 78:17–23. https://doi.org/10.1006/jipa.2001.5030

    Article  CAS  Google Scholar 

  • Shapiro-Ilan D, Gouge D, Koppenhӧfer A (2002) Factors affecting commercial success: case studies in cotton, turf, and citrus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publications, 355, p 333

    Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Patterson FJ (2006) Application technology and environmental considerations use of entomopathogenic nematodes in biological control. Biol Control 38:124–133

    Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE, Mizell RF, Horton DL, Behleand RW, Dunlap CA (2010) Efficacy of Steinernema carpocapsae for control of the lesser peach tree borer, Synanthedon pictipes: improved aboveground suppression with a novel gel application. Biol Control 54:23–28

    Google Scholar 

  • Shapiro-Ilan DI, Han R, Dolinksi C (2012) Entomopathogenic nematode production and application technology. J Nematol 44(2):206–217

    PubMed  PubMed Central  Google Scholar 

  • Shapiro-Ilan DI, Brown I, Lewis EE (2014) Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits. J Nematol 46(1):27–34

    PubMed  PubMed Central  Google Scholar 

  • Singh SP (1977) Isolation of an entomophilic nematode from potato cutworms. Curr Sci 46:454–455

    Google Scholar 

  • Singh SP (1993) Effectiveness of an indigenous entomophilic nematode against citrus butterfly. J Insect Sci 6:107–108

    Google Scholar 

  • Singh SP, Ballal CR (1991) Status of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolilytidae) Technical document No. 36, All India Cordinated Research Programme on biological control of crop pest and weeds, Banglore, p. 6

    Google Scholar 

  • Sitaramaiah S, Gunneswara Rao S, Hussaini SS, Venkateswarh P, Nageshwara Rhao S (2003) Use of entomopathogenic nematodes Steinernema carpocapsae against Spodoptera litura fab. In tobacco nursery. In: Tandon PL (ed) Botanical control of lepidopteran pests. Project Directorate of Biological Control, Bangalore, pp 211–214

    Google Scholar 

  • Smart GC (1995) Entomopathogenic nematodes for the biological control of insects. J Nematol 27:529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spence KO, Lewis EE, Perry RN (2008) Host-finding and invasion by entomopathogenic and plant-parasitic nematodes: evaluating the ability of laboratory bioassays to predict. J Nematol 40(2):93–98

    PubMed  PubMed Central  Google Scholar 

  • Spence KO, Stevens GN, Arimoto H, Ruiz-Vega J, Kaya HK, Lewis EE (2011) Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. J Invertebrate Pathol 106:268–273

    CAS  Google Scholar 

  • Sridhar V, Chakravarthy AK, Asokan R, Vinesh LS, Rebijith KB, Vennila S (2014) New record of the invasive South American tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India. Pest Manag Hortic Ecosyst 20:148–154

    Google Scholar 

  • Subbotin SA, Moens M (2006) Molecular taxonomy and phylogeny. In: Perry R, Moens M (eds) Plant nematology. CABI, Wallingford

    Google Scholar 

  • Sudhaus W (1993) Die mittel symbiontis cher Bakterien entomopathogenen Nematoden Gattungen Heterorhabditis and Steinernema sindkeine Schwester taxa. Verhandlungen der deutschen Zoologischen Gesellschaf 86:146

    Google Scholar 

  • Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control 59:123–129

    Google Scholar 

  • Tyagi K, Kumar P (2015) First report on Western flower thrips Frankliniella occidentalis (Pergande) (Thripidae: Thysanoptera) from India. A potential havoc to Indian agriculture. Halters 6:1–3

    CAS  Google Scholar 

  • Vidhi T (2012) Application of entomopathogenic nematodes in biological control of insect pests. Ph. D. Thesis, Caudhary Charan Singh University, pp 475

    Google Scholar 

  • Vyas RV, Yadav DN (1993) Steinemema glaseri (Steiner, 1923) Travassos, 1927, a biological control agent of root grubs Holotrichia consanguinea Blanchard. Pakistan J Nematol 11:11–17

    Google Scholar 

  • Vyas RV, Patel NB, Patel PD, Patel DJ (2001) Field efficacy of entomopathogenic nematode (Steinernema riobrave) against cotton bollworms. National Congress on Centenary of Nematology in India. Appraisal and Future Plans. IARI, New Delhi, pp 115–207

    Google Scholar 

  • Vyas RV, Patel NB, Parul P, Patel DJ (2002) Efficacy of entomopathogenic nematode against Helicoverpa armigera on pigeonpea. Int Chickpea Pigeonpea Newslett 9:43–44

    Google Scholar 

  • Wang H, Luan JB, Dong H, Qian HT, Cong B (2014) Natural occurrence of entomopathogenic nematodes in Liaoning (Northeast China). J Asia-Pacific Entomol 17:399–406

    Google Scholar 

  • Wouts WM (1981) Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematoda: Heterorhabditidae) on artificial media. J Nematol 13:467–469. www.eagri.org.˃eagri50˃ENTO232˃lec11Lec11-

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye WM, Torres-Barragan A, Cardoza YJ (2011) Oscheius carolinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from vermicompost. Nematology 12:121–135

    Google Scholar 

  • Zhu H, Grewal PS, Reding ME (2011) Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests. Appl Eng Agric 27:317–324

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Zoology, Chaudhary Charan Singh University, Meerut, for providing the laboratory facility to conduct the experimental work. Department of Science and Technology, New Delhi, India, is also thankfully acknowledged for providing financial assistance to Aasha through DST WOS-A (SR/WOS-A/LS-1083/2014).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaubey, A.K., Aasha (2021). Entomopathogenic Nematodes. In: Omkar (eds) Microbial Approaches for Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3595-3_9

Download citation

Publish with us

Policies and ethics