Skip to main content

Rhizobium rhizogenes-Mediated Genetic Transformation of Antidiabetic Plants

  • 313 Accesses

Abstract

Rhizobium rhizogenes induces a disease syndrome in infected plants commonly known as hairy roots (HR) production. These unique organs are considered of transgenic nature since they derived after horizontal gene transfer from the bacterial root-inducing (Ri) plasmid to the plant genome. The HR culture represents a major biotechnological tool facilitating the production of plant-derived compounds exhibiting interesting features for pharmaceutical, cosmetics and food industries. Moreover, HR cultures can be used for studying the biosynthetic pathways of plant-derived molecules or investigating interactions occurring during phytoremediation. Among this wide range of HR applications, it is important to point out the possibility to synthesize some antidiabetic compounds which are of special interest because diabetes is one of the major and frequently occurring debilitating diseases of the human body in the world. The use of available synthetic antidiabetic drugs has several limitations, including drug resistance, side effects, or toxicity. Therefore, the availability of new antidiabetic drugs from a natural source is of big importance. Stevia rebaudiana Bertoni is one of the promising plant species, constituting the source of desired plant molecules. This plant accumulates steviol glycosides (SGs), which are responsible for the sweet flavour of stevia leaves. These secondary metabolites are considered metabolically inert and therefore could be a safe substitute for sugar for diabetic people. In this chapter, we would like to present recent achievements in the range of antidiabetic substances production via genetic transformation of plants using R. rhizogenes strains. In this context, a key role of the so-called rol genes, carried by Ri plasmids, in the biosynthesis of various secondary metabolites is also discussed. Our aim is to bring closer the issue of HR cultures and their big potential in the pharmacognosy of antidiabetic plants.

Keywords

  • Genetic manipulation
  • In vitro culture
  • Pharmacognosy
  • Plant biotechnology
  • Secondary metabolites
  • Transformed root culture

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-3529-8_12
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-3529-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7

References

  • Abdel-Aal RA, Abdel-Rahman MS, Bayoumi SA et al (2021) Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. J Ethnopharmacol 265:113188. https://doi.org/10.1016/j.jep.2020.113188

    CAS  CrossRef  PubMed  Google Scholar 

  • Ackermann C (1977) Pflanzen aus Agrobacterium rhizogenes-Tumoren and Nicotiana tabacum. Plant Sci Lett 8:23–30

    Google Scholar 

  • Agarwal M (2015) Tissue culture of Momordica charantia L.: a review. J Plant Sci 3:24–32

    Google Scholar 

  • Ahmad U, Ahmad RS, Arshad MS et al (2018) Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Health Dis 17:1–8

    Google Scholar 

  • Ahmed ABA, Komalavalli N, Muthukumar M et al (2009) Pharmacological activities, phytochemical investigations and in vitro studies of Gymnema sylvestre R.Br.—a historical review. Comprehen Bioact Nat Prod Potent Challenge 1:75–99

    Google Scholar 

  • Ahmed ABA, Raob AS, Raoa MV (2010) In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine 17:1033–1039

    PubMed  Google Scholar 

  • Alam F, Islam MA, Kamal MA, Gan SH et al (2018) Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Curr Med Chem 25:5395–5431

    CAS  PubMed  Google Scholar 

  • Alkhalidy H, Moore W, Zhang Y (2015) Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic b-cell mass in middle-aged obese diabetic mice. J Diabetes Res 2015:532984

    PubMed  PubMed Central  Google Scholar 

  • Alqahtani A, Hamid K, Kam A et al (2013) The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem 20:908–931

    CAS  PubMed  Google Scholar 

  • Amanullah BM, Rizvi ZF, Zia M (2016) Production of artemisin and its derivatives in hairy roots of Artemisia dubia induced by rolA gene transformation. Pak J Bot 48:699–706

    CAS  Google Scholar 

  • American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36:S67–S74

    Google Scholar 

  • Anand A, Krichevsky A, Schornack S et al (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad W, Haq IU, Waheed MT et al (2014) Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens. PLoS One 9:e96979

    PubMed  PubMed Central  Google Scholar 

  • Attele AS, Zhou YP, Xie JT et al (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    CAS  PubMed  Google Scholar 

  • Babu SS, Madhuri DB, Ali SL (2016) A pharmacological review of Urena lobata plant. Asian J Pharm Clin Res 9:20–22

    CAS  Google Scholar 

  • Banerjee S, Singh S, Ur Rahman L (2012) Biotransformation studies using hairy root cultures—a review. Biotechnol Adv 30:461–468

    CAS  PubMed  Google Scholar 

  • Bansode TS, Salalkar BK (2017) Phytotherapy: herbal medicine in the management of diabetes mellitus. Plant Sci Today 4:161–165

    CAS  Google Scholar 

  • Bao FX, Tao LX, Zhang HY (2018) Research progress on pharmacological effects of Gynostemma pentaphyllum active ingredients. Chin J New Drugs Clin Remedies 37:11–17

    Google Scholar 

  • Bedekar A, Shah K, Koffas M (2010) Natural products for type II diabetes treatment. Adv Appl Microbiol 71:21–73

    CAS  PubMed  Google Scholar 

  • Bellincampi D, Cardarelli M, Zaghi D et al (1996) Oligogalacturonides prevent rhizogenesis in rolB transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bettini P, Michelotti S, Bindi D et al (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107:831–836

    CAS  PubMed  Google Scholar 

  • Bondarev N, Nosov A, Kornienko A (1997) Influence of several cultural factors on the growth and efficiency of Stevia callus and suspension cultures. Biotechnology 7:30–37

    Google Scholar 

  • Bondarev N, Reshetnyak O, Nosov A (2001) Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci 161:155–163

    CAS  Google Scholar 

  • Bondarev N, Reshetnyak O, Nosov A (2003a) Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165:845–850

    CAS  Google Scholar 

  • Bondarev N, Sukhanova M, Reshetnyak OV et al (2003b) Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny. Biol Plant 47:261–264

    CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J et al (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rolA, B, C genes only. J Biotechnol 81:151–158

    CAS  PubMed  Google Scholar 

  • Bouchez D, Camilleri C (1990) Identification of a putative rolB gene on the TR-DNA of the Agrobacterium rhizogens A4 Ri plasmid. Plant Mol Biol 14:617–619

    CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S et al (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    CAS  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    CAS  PubMed  Google Scholar 

  • Brandle JE, Starrratt AN, Gijen M (1998) Stevia rebaudiana: its agricultural, biological and chemical properties. Can J Plant Sci 78:527–536

    CAS  Google Scholar 

  • Brandle J, Richman A, Swanson AK et al (2002) Leaf ESTs from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis. Plant Mol Biol 50:613–622

    CAS  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    CAS  PubMed  Google Scholar 

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV et al (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    CAS  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP et al (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:113–221

    Google Scholar 

  • Bulgakov VP, Veselova MV, Tchernoded GK et al (2005) Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta 221:471–478

    CAS  PubMed  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN et al (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. In: Doran P (ed) Biotechnology of hairy root systems. Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp 1–22

    Google Scholar 

  • Cao W, Wang Y, Shi M et al (2018) Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front Plant Sci 27:554

    Google Scholar 

  • Cao DM, Vu PTB, Hoang MTT et al (2020) Developing a sufficient protocol for the enhancement of α glucosidase inhibitory activity by Urena lobata L. aeroponic hairy roots using exogenous factors, a precursor, and an elicitor. Plants 9:548

    CAS  PubMed Central  Google Scholar 

  • Carakostas MC, Curry LL, Boileau AC et al (2008) Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol 46:S1–S10

    CAS  PubMed  Google Scholar 

  • Cardarelli M, Spanò L, De Paolis A et al (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391

    CAS  PubMed  Google Scholar 

  • Carneiro JWP, Muniz AS, Guedes TA (1997) Greenhouse bedding plant production of Stevia rebaudiana (Bert) Bertoni. Can J Plant Sci 77:473–474

    Google Scholar 

  • Ceunen S, Geuns JM (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228

    CAS  PubMed  Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    CAS  PubMed  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    CAS  Google Scholar 

  • Chang CK, Chang KS, Lin YC et al (2005) Hairy root cultures of Gynostemma pentaphyllum (Thunb.) Makino: a promising approach for the production of gypenosides as an alternative of ginseng saponins. Biotechnol Lett 27:1165–1169

    CAS  PubMed  Google Scholar 

  • Chen TH, Chen SC, Chan P et al (2005) Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 71:108–113

    CAS  PubMed  Google Scholar 

  • Chen J, Jeppesen PB, Nordentoft I et al (2007) Stevioside improves pancreatic cell function during glucotoxicity via regulation of acetyl-CoA carboxylase. Am J Physiol Endocrinol Metab 292:1906–1916

    Google Scholar 

  • Chen XH, Bai X, Liu YH et al (2009) Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. J Ethnopharmacol 122:205–209

    CAS  PubMed  Google Scholar 

  • Choudhury H, Pandey M, Hua CK et al (2018) An update on natural compounds in the remedy of diabetes mellitus: a systematic review. J Tradit Complement Med 8:361–376

    PubMed  Google Scholar 

  • Christey MC, Braun RH (2005) Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. In: Peña L (ed) Transgenic plants: methods and protocols methods in molecular biology™. Humana Press, Totowa, NJ, pp 47–60

    Google Scholar 

  • Christodoulou M, Tchoumtchoua J, Skaltsounis A et al (2019) Natural alkaloids intervening the insulin pathways: new hopes for anti-diabetic agents? Curr Med Chem 26:5982–6015

    CAS  PubMed  Google Scholar 

  • Cicero AFG, Baggioni A (2016) Berberine and its role in chronic disease, vol 928. Springer International, Cham

    Google Scholar 

  • Contreras A, Leroy B, Mariage P et al (2019) Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 9:5768

    PubMed  PubMed Central  Google Scholar 

  • Costantino P, Capone I, Cardarelli M et al (1994) Bacterial plant oncogenes: the rol genes’ saga. Genetica 94:203–211

    CAS  PubMed  Google Scholar 

  • Cui G, Duan L, Jin B et al (2015) Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol 169:1607–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis WR (2000) Hairy roots, bioreactor growth. In: Spier RE (ed) Encyclopedia of cell technology. Wiley, New York, pp 827–841

    Google Scholar 

  • Das A, Gantait S, Mandal N (2011) Micropropagation of an elite medicinal plant: Stevia rebaudiana Bert. Int J Agric Res 6:40–48

    CAS  Google Scholar 

  • Datta A, Bhattacharya S, Pal CB, et al (2010) Process for production of anti-diabetic compound in root culture of Catharanthus roseus. US Patent WO2010004584, Aug 2010

    Google Scholar 

  • Dehio C, Grossmann K, Schell J et al (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210

    CAS  PubMed  Google Scholar 

  • Den Hartogh DJ, Tsiani E (2019) Antidiabetic properties of naringenin: a citrus fruit polyphenol. Biomolecules 9:99

    Google Scholar 

  • Deng C, Hao X, Shi M et al (2019) Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci 284:1–8

    CAS  PubMed  Google Scholar 

  • Desai S, Tatke P (2015) Charantin: an important lead compound from Momordica charantia for the treatment of diabetes. J Pharmacogn Phytochem 3:163–166

    Google Scholar 

  • Dessaux Y, Petit A, Tempé J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC, Boca Raton, FL, pp 109–136

    Google Scholar 

  • Dey L, Attele AS, Yuan CS (2002) Alternative therapies for type 2 diabetes. Altern Med Rev 7:45–58

    PubMed  Google Scholar 

  • Dilshad E, Cusido RM, Estrada KR et al (2015a) Genetic transformation of Artemisia carvifolia Buch with rol genes enhances artemisin accumulation. PLoS One 10:e0140266

    PubMed  PubMed Central  Google Scholar 

  • Dilshad E, Cusido RM, Palazon J et al (2015b) Enhanced artemisin yield by expression of rol genes in Artemisia annua. Malar 14:424

    Google Scholar 

  • Dilshad E, Ismail H, Cusido RM et al (2016) Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC Plant Biol 16:125

    PubMed  PubMed Central  Google Scholar 

  • Dubey P, Mishra S (2017) A review on: diabetes and okra (Abelmoschus esculentus). J Med Plants Stud 5:23–26

    Google Scholar 

  • Dubrovina AS, Manyakhin AY, Zhuravlev YN et al (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88:727–736

    CAS  PubMed  Google Scholar 

  • Durazzo A, Lucarini M, Novellino E et al (2019) Abelmoschus esculentus (L.): bioactive components’ beneficial properties—focused on antidiabetic role—for sustainable health applications. Molecules 24:38

    Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    PubMed  PubMed Central  Google Scholar 

  • Estruch JJ, Schell J, Spena A (1991a) The protein encoded by rolB plant oncogene hydrolyses indole glucosides. EMBO J 10:3125–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K et al (1991b) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faiss M, Strnad M, Redig P et al (1996) Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46

    CAS  Google Scholar 

  • Filippini F, Rossi V, Marin O et al (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    CAS  PubMed  Google Scholar 

  • Gantait S, Mukherjee E (2021) Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Biotechnol 105:35–53

    CAS  PubMed  Google Scholar 

  • Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Google Scholar 

  • Gantait S, Das A, Banerjee J (2018) Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia—a review. Sugar Tech 20:1–10

    CAS  Google Scholar 

  • Gao W, Sun H, Xiao H et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73

    PubMed  PubMed Central  Google Scholar 

  • Gaosheng H, Jingming J (2012) Production of useful secondary metabolites through regulation of biosynthetic pathway in cell and tissue suspension culture of medicinal plants. In: Recent advances in plant in vitro culture. IntechOpen, Rijeka. https://doi.org/10.5772/53038

    CrossRef  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    CAS  PubMed  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    CAS  PubMed  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Müller J et al (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    CAS  PubMed  Google Scholar 

  • Georgiev MI, Radziszewska A, Neumann M et al (2015) Metabolic alterations of Verbascum nigrum L. plants and SAArT transformed roots as revealed by NMR-based metabolomics. Plant Cell Tiss Org Cult 123:349–356

    CAS  Google Scholar 

  • Geuns JM (2003) Stevioside. Phytochemistry 64:913–921

    CAS  PubMed  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    CAS  PubMed  Google Scholar 

  • Gregersen S, Jeppesen PB, Holst JJ et al (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53:73–76

    CAS  PubMed  Google Scholar 

  • Grishchenko OV, Kiselev KV, Tchernoded GK et al (2013) The influence of the rolC gene on isoflavonoid production in callus cultures of Maackia amurensis. Plant Cell Tissue and Organ Cult 113:429–435

    CAS  Google Scholar 

  • Grishchenko OV, Kiselev KV, Tchernoded GK et al (2016) RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells. Appl Microbiol Biotechnol 100:7479–7489

    CAS  PubMed  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK et al (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    CAS  PubMed  Google Scholar 

  • Gulati V, Harding IH, Palombo EA (2012) Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia. BMC Complement Altern Med 12:77

    PubMed  PubMed Central  Google Scholar 

  • Guleria P, Yadav SK (2013) Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway. PLoS One 8:e74731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta E, Shalini P, Sugdev S et al (2013) Nutritional and therapeutic values of Stevia rebaudiana: a review. J Med Plant Res 7:3343–3353

    CAS  Google Scholar 

  • Gupta P, Sharma S, Saxena S (2014) Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside production. Appl Biochem Biotechnol 172:2894–2906

    CAS  PubMed  Google Scholar 

  • Gupta P, Sharma S, Saxena S (2015) Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176:863–874

    CAS  PubMed  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C et al (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11:33

    PubMed  PubMed Central  Google Scholar 

  • Hamill JD, Parr AJ, Rhodes MJC et al (1987) New routes to plant secondary products. Nat Biotechnol 5:800–804

    CAS  Google Scholar 

  • Hao X, Pu Z, Cao G et al (2020) Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J Adv Res 23:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Poole A, Peacock WJ et al (1999) Arabidopsis entkaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119:507–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsing YI, Su WF, Chang WC (1983) Accumulation of stevioside and rebaudioside A in callus culture of Stevia rebaudiana Bertoni. Bot Bull Acad Sin 24:115–119

    CAS  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    CAS  Google Scholar 

  • Huang S, Vishwakarma RK, Lee T et al (2014) Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Bot Stud 55:17

    PubMed  PubMed Central  Google Scholar 

  • Huang Q, Sun M, Yuan T et al (2019) The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem 274:368–375

    CAS  PubMed  Google Scholar 

  • Hussain MS, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    PubMed  PubMed Central  Google Scholar 

  • Hussain B, Lucas SJ, Budak H (2018) CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief Funct Genomics 17:319–328

    CAS  PubMed  Google Scholar 

  • International Diabetic Federation (IDF) (2019) IDF diabetic atlas-9-edition. https://www.diabetesatlas.org/en/

  • Ismail H, Dilshad E, Waheed MT et al (2016) Transformation of Lactuca sativa L. with rolC gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo. 3 Biotech 6:215

    PubMed  PubMed Central  Google Scholar 

  • Jadeja RP, Tadhani MB, Rema S et al (2005) Qualitative studies on the production of stevioside in in vitro callus culture of Stevia rebaudiana Bertoni. Analele ştiinţifice ale Universitaţii “Al. I. Cuza” Iaşi Tomul LI, s. II a. Biol Veg 51:139–140

    Google Scholar 

  • Janarthanam B, Gopalakrishnan M, Sekar T (2010) Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh J Sci Ind Res 45:243–248

    CAS  Google Scholar 

  • Jeppesen PB, Gregersen S, Poulsen CR et al (2000) Stevioside acts directly on pancreatic β-cells to secrete insulin; Actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+ channel activity. Metabolism 49:208–214

    CAS  PubMed  Google Scholar 

  • Jeppesen PB, Gregersen S, Alstrup KK et al (2002) Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 9:9–14

    CAS  PubMed  Google Scholar 

  • Jeppesen PB, Gregersen S, Rolfsen SE et al (2003) Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 52:372–378

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA ndonuclease in adaptive bacterial immunity. Science 337:816–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones WP, Chin YW, Kinghorn AD (2006) The role of pharmacognosy in modern medicine and pharmacy. Curr Drug Targets 7:247–264

    CAS  PubMed  Google Scholar 

  • Joubert P, Beaupere D, Lelievre P et al (2002) Effect of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    CAS  Google Scholar 

  • Kai G, Yang S, Luo X et al (2011) Coexpression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11:43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanetkar PV, Singhal RS, Laddha KS, Kamat MY (2006) Extraction and quantification of gymnemic acids through gymnemagenin from callus cultures of Gymnema sylvestre. Phytochem Anal 17:409–413

    CAS  PubMed  Google Scholar 

  • Kang KH, Lee EW (1981) Physio-ecological studies on stevia (Stevia rebaudiana Bertoni). Korean J Crop Sci 26:69–89

    Google Scholar 

  • Kar A, Choudhary BK, Bandyopadhyay NG (2003) Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol 84:105–108

    PubMed  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res Planta Med 3:1222–1239

    CAS  Google Scholar 

  • Keller AC, Ma J, Kavalier A et al (2011) Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 19:32–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil SA, Zamir R, Ahmad N (2014) Selection of suitable propagation method for consistent plantlets production in Stevia rebaudiana (Bertoni). Saudi J Biol Sci 21:566–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiselev KV, Kusaykin MI, Dubrovina AS et al (2006) The rolC gene induces expression of a pathogenesis-related β-1,3-glucanase in transformed ginseng cells. Phytochem 67:2225–2231

    CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV et al (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    CAS  PubMed  Google Scholar 

  • Koonin EV (2016) Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc B 371:20150442

    Google Scholar 

  • Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2:119

    PubMed  PubMed Central  Google Scholar 

  • Kooti W, Farokhipour M, Asadzadeh Z et al (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 15:1832–1842

    Google Scholar 

  • Kujur RS, Singh V, Ram M et al (2010) Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetiis rats. Pharm Res 2:27–32

    Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci U S A 112:5844–5849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix C, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7:e00863–e00816

    PubMed  PubMed Central  Google Scholar 

  • Ladygin VG, Bondarev NI, Semenova GA et al (2008) Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol Plant 52:9–16

    CAS  Google Scholar 

  • Lee KR, Park JR, Choi BS (1982) Studies on the callus culture of stevia as a new sweetening source and the formation of stevioside. Korean J Food Sci Technol 14:179–183

    CAS  Google Scholar 

  • Lee SG, Salomon E, Yu O et al (2019) Molecular basis for branched steviol glucoside biosynthesis. PNAS 116:13131–13136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levesque H, Delepelaire P, Rouze P et al (1988) Common evolutionary origin of the central portions of the Ri TLDNA of Agrobacterium rhizogenes and the T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    CAS  PubMed  Google Scholar 

  • Li F, Weng J (2017) Demystifying traditional herbal medicine with modern approach. Nat Plant 3:17109

    Google Scholar 

  • Libik-Konieczny M, Capecka E, Kąkol E et al (2018) Growth, development and steviol glycosides content in the relation to the photosynthetic activity of several Stevia rebaudiana Bertoni strains cultivated under temperate climate conditions. Sci Hortic (Amsterdam) 23:10–18

    Google Scholar 

  • Libik-Konieczny M, Michalec-Warzecha Ż, Dziurka M et al (2020) Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol 104:5929–5941

    CAS  PubMed  Google Scholar 

  • Luwańska A, Perz A, Mańkowska G et al (2015) Application of in vitro stevia (Stevia rebaudiana Bertoni) cultures in obtaining steviol glycoside rich material. Herba Polonica 61:50–63

    Google Scholar 

  • Ma R, Xiao Y, Lv Z et al (2017) AP2/ERF Transcription factor, Ii049, positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Front Plant Sci 8:1361

    PubMed  PubMed Central  Google Scholar 

  • Majumder A, Ray S, Jha S (2016) Hairy roots and phytoremediation. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems reference series in phytochemistry. Springer, Cham, pp 549–572

    Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    CAS  Google Scholar 

  • Martin-Tanguy J, Sun Y, Burtin D et al (1996) Attenuation of the phenotype caused by the root-inducing, lefthand, transferred DNA and its rolA gene (correlations with changes in polyamine metabolism and DNA methylation). Plant Physiol 111:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Shekhawat GS (2013) Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35:1–9

    Google Scholar 

  • Matveeva TV, Lutova LA (2014) Horizontal gene transfer (HGT) from Agrobacterium to plants. Front Plant Sci 5:326

    PubMed  PubMed Central  Google Scholar 

  • Matveeva TV, Sokornova SV, Lutova LA (2015) Influence of Agrobacterium oncogenes on secondary metabolism of plants. Phytochem Rev 14:541–554

    CAS  Google Scholar 

  • Maurel C, Barbier-Brygoo H, Spena A et al (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro ML, Trovato M, De Paolis A et al (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    CAS  PubMed  Google Scholar 

  • Mauro ML, Constantino P, Bettini PP (2017) The never ending story of rol genes: a century after. Plant Cell Tiss Org Cult 131:201–212

    CAS  Google Scholar 

  • Meyer A, Tempe J, Costantino P (2000) Hairy root: a molecular overview functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen N (eds) Plant-microbe interactions. APS Press, Minnesota, pp 93–13

    Google Scholar 

  • Michalec-Warzecha Ż, Pistelli L, D’Angiolillo F et al (2016) Establishment of highly efficient Agrobacterium rhizogenes-mediated transformation for Stevia rebaudiana Bertoni Explants. Acta Biol Cracov Bot 58:113–118

    CAS  Google Scholar 

  • Mishra N (2011) An analysis of antidiabetic activity of Stevia rebaudiana extract on diabetic patient. J Nat Sci Res 1:1–10

    Google Scholar 

  • Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    CAS  PubMed  Google Scholar 

  • Misra H, Soni M, Silawat N et al (2011) Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. J Pharm Bioallied Sci 3:242–248

    PubMed  PubMed Central  Google Scholar 

  • Mitra A, Mukherjee C, Sircar D (2017) Metabolic phytochemistry-based approaches for studying secondary metabolism using transformed root culture systems. In: Jha S (ed) Transgenesis and secondary metabolism, reference series in phytochemistry. Springer, Cham, pp 513–537

    Google Scholar 

  • Mohajjel-Shoja H, Clément B, Perot J et al (2011) Biological activity of the Agrobacterium rhizogenes-derived rolC gene of Nicotiana tabacum and its functional relation to other plant genes. Mol Plant Microbe Interact 24:44–53

    CAS  PubMed  Google Scholar 

  • Nagappan K, Anoop K, Kowmudi G et al (2018) Charantin: a neglected antidiabetic compound from Momordica charantia L. Int J Pharm Sci Rev Res 51:35–40

    CAS  Google Scholar 

  • Nedjimi B, Beladel B (2015) Assessment of some chemical elements in wild Shih (Artemisia herba-alba Asso) using INAA technique. J Appl Res Med Aromat Plants 2:203–205

    Google Scholar 

  • Nemoto K, Hara M, Suzuki M et al (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 12:1145–1147

    Google Scholar 

  • Nilsson O, Moritz T, Imbault N et al (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson O, Little CH, Sandberg G et al (1996a) Expression of two heterologous promoters Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895

    CAS  PubMed  Google Scholar 

  • Nilsson O, Moritz T, Sundberg B et al (1996b) Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112:493–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onoagbe IO, Negbenebor EO, Ogbeide VO et al (2010) A study of the anti-diabetic effects of Urena lobata and Sphenostylis stenocarpa in streptozotocin-induced diabetic rats. Eur J Sci Res 43:6–14

    Google Scholar 

  • Ozyigit I, Dogan I, Artam Tarhan E (2013) Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops. In: Hakeem K, Ozturk AP, M. (eds) Crop improvement. Springer, Boston, MA, pp 1–48

    Google Scholar 

  • Palazón J, Cusido RM, Roig C et al (1998) Expression of the rol gene and nicotine production in transgenic hairy roots and their regenerated plants. Plant Cell Rep 17:384–390

    PubMed  Google Scholar 

  • Pan GY, Huang ZJ, Wang GJ et al (2003) The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 69:632–636

    CAS  PubMed  Google Scholar 

  • Pandey S (2018) Morphology, chemical composition and therapeutic potential of Stevia rebaudiana. IAJPS 05:2260–2266

    CAS  Google Scholar 

  • Pandey H, Pandey P, Pandey SS et al (2016) Meeting the challenge of stevioside production in the hairy roots of Stevia rebaudiana by probing the underlying process. Plant Cell Tiss Org Cult 126:511–521

    CAS  Google Scholar 

  • Park SU, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy Papaver somniferum l. and california poppy Eschscholzia californica cham. root cultures. J Exp Bot 51:1005–1016

    CAS  PubMed  Google Scholar 

  • Parr AJ (2017) Secondary products from plant cell cultures–early experiences with Agrobacterium rhizogenes-transformed hairy roots. In: Jha S (ed) Transgenesis and secondary metabolism, reference series in phytochemistry. Springer, Cham, pp 1–13

    Google Scholar 

  • Patibandla C, Patterson S, Shu X (2015) Effects of gypenoside on pancreatic beta cell function and insulin secretion. Endocr Abstr 38:P279. https://doi.org/10.1530/endoabs.38.P279

    CrossRef  Google Scholar 

  • Paul P, Singh SK, Patra B et al (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    CAS  PubMed  Google Scholar 

  • Pavlova O, Matveeva T, Lutova L (2014) Rol-GENES of Agrobacterium rhizogenes. Russ J Genet Appl Res 4:137–145

    Google Scholar 

  • Pepato MT, Keller E, Baviera AM et al (2002) Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. J Ethnopharmacol 81:191–197

    CAS  PubMed  Google Scholar 

  • Pistelli L, Giovannini A, Ruffoni B et al (2010) Hairy root cultures for secondary metabolites production. In: Giardi MA, Rea G, Berra B (eds) Bio-farms for nutraceuticals. Advances in experimental medicine and biology. Springer, Boston, pp 167–184

    Google Scholar 

  • Purnomo Y, Soeatmadji DW, Sumitro SB et al (2015) Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity. Asian Pac J Trop Med 5:645–649

    CAS  Google Scholar 

  • Qiu F, Yang C, Yuan L et al (2018) A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids. Org Lett 20:7807–7810

    CAS  PubMed  Google Scholar 

  • Rafiullah MRM, Siddiqui AW, Mir SR et al (2006) Antidiabetic activity of some Indian medicinal plants. Pharm Biol 44:95–99

    Google Scholar 

  • Rank A, Midmore J (2006) Stevia—an intense natural sweetener: laying the groundwork for a new rural industry. RIRDC Publication No. 06/020 RIRDC Project No UCQ-17A

    Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    CAS  PubMed  Google Scholar 

  • Rawat JM, Bhandari A, Raturi M et al (2019) Agrobacterium rhizogenes mediated hairy root cultures: a promising approach for production of useful metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 103–118

    Google Scholar 

  • Reis RV, Silva TFO, Chierrito TPC et al (2017) Morpho-anatomical study of Stevia rebaudiana roots grown in vitro and in vivo. Br J Pharmacogn 27:34–39

    Google Scholar 

  • Richman A, Swanson A, Humphrey T et al (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67

    CAS  PubMed  Google Scholar 

  • Ricigliano V, Kumar S, Kinison S et al (2016) Regulation of sesquiterpenoid metabolism in recombinant and elicited Valeriana officinalis hairy roots. Phytochemistry 125:43–53

    CAS  PubMed  Google Scholar 

  • Riker AJ, Banfield WM, Wright WH et al (1930) Studies on infectious hairy root of nursery-apple tree. J Agric Res 41:507–540

    Google Scholar 

  • Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81:975–994

    PubMed  Google Scholar 

  • Rohani ER, Chiba M, Kawaharada M et al (2016) An MYB transcription factor regulating specialized metabolisms in Ophiorrhiza pumila. Plant Biotechnol 33:1–9

    CAS  Google Scholar 

  • Roychowdhury D, Ghosh B, Chaubey B et al (2013) Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus 56:81–89

    Google Scholar 

  • Roychowdhury D, Basu A, Jha S (2015) Morphological and molecular variation in Ri-transformed root lines are stable in long term cultures of Tylophora indica. Plant Growth Regul 75:443–453

    CAS  Google Scholar 

  • Ryder MH, Tate ME, Kerr A (1985) Virulence properties of strains of Agrobacteriumon the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Ata AV, Anil Kumar N et al (2018) The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore, pp 27–51

    Google Scholar 

  • Salehi B, Ata A, Anil Kumar NV et al (2019) Antidiabetic potential of medicinal plants and their active components. Biomolecules 9:551

    PubMed Central  Google Scholar 

  • Sarkar S, Ghosh I, Roychowdhury D et al (2018) The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore

    Google Scholar 

  • Sathasivampillai SV, Rajamanoharan PR, Munday M, Heinrich M (2017) Plants used to treat diabetes in Sri Lankan Siddha Medicine—an ethnopharmacological review of historical and modern sources. J Ethnopharmacol 198:531–599

    PubMed  Google Scholar 

  • Schell J, Van Montagu M, De Beuckeleer M et al (1979) Interactions and DNA transfer between Agrobacterium tumefaciens the Ti plasmid and the host. Proc R Soc Lond Ser B 204:251–266

    CAS  Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  PubMed Central  Google Scholar 

  • Sevon N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    CAS  PubMed  Google Scholar 

  • Shapiro K, Gong WC (2002) Natural products used for diabetes. J Am Pharm Assoc 42:217–226

    Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 13:62–75

    CAS  Google Scholar 

  • Shi M, Luo X, Ju G et al (2016) Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64:2523–2530

    CAS  PubMed  Google Scholar 

  • Shi M, Gong H, Cui L et al (2020) Targeted metabolic engineering of committed steps improves anti-cancer drug camptothecin production in Ophiorrhiza pumila hairy roots. Ind Crop Prod 148:112277

    CAS  Google Scholar 

  • Shi M, Liao P, Nile SH et al (2021) Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol 39:137–149

    CAS  PubMed  Google Scholar 

  • Shibata H, Sawa Y, Oka T et al (1995) Steviol and steviol glycoside. Glucosyl transferase activities in S. rebaudiana Bertoni. Purification and partial characterization. Arch Biochem Biophys 321:390–396

    CAS  PubMed  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP et al (2008) Individual and combined effects of the rolA, B and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125

    CAS  PubMed  Google Scholar 

  • Shoja HM (2010) Contribution to the study of the Agrobacterium rhizogenes plast genes rolB and rolC and their homologs in Nicotiana tabacum. Thesis Universite de Strasbourg, France

    Google Scholar 

  • Singh S, Mishra P, Haider ZA et al (2017) Efficacy of Rhizobium rhizogenes strains on hairy root transformation in Stevia rebaudiana L. Bertoni. J Pharmacogn Phytochem 6:55–60

    Google Scholar 

  • Sinkar VP, White FF, Gordon MP (1987) Molecular biology of Ri-plasmid—a review. J Biosci 11:47–57

    CAS  Google Scholar 

  • Sirikantaramas S, Taura F (2017) Cannabinoids: biosynthesis and biotechnological applications in Cannabis sativa L.—Botany and Biotechnology. Springer International, Cham, pp 183–206

    Google Scholar 

  • Sivaram L, Mukundan U (2003) In vitro culture studies on Stevia rebaudiana. In Vitro Cell Dev Biol Plant 39:520–523

    Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L et al (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    CAS  PubMed  Google Scholar 

  • Stachel SE, Messens E, van Montagu M et al (1985) Identification of the signal molecules produced by wounded plant cells which activate the T-DNA transfer process in Agrobacterium tumefaciens. Nature 318:624–629

    Google Scholar 

  • Steward FC, Rolfs FM, Hall FH (1900) A fruit disease survey of western New York in 1900. New York Agric Exp Station Bact 191:291–331

    Google Scholar 

  • Sun M, Shi M, Wang Y et al (2019) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70:243–254

    CAS  PubMed  Google Scholar 

  • Suzuki M (1989) SPXX a frequent sequence motif in gene regulatory proteins. J Mol Biol 207:61–84

    CAS  PubMed  Google Scholar 

  • Suzuki K, Tanaka K, Yamamoto S et al (2009) Ti and Ri Plasmids. In: Schwartz E (ed) Microbial megaplasmids. Microbiology monographs. Springer, Berlin, Heidelberg, pp 133–147

    Google Scholar 

  • Swanson SM, Mahady GB, Beecher CWW (1992) Stevioside biosynthesis by callus, root, shoot and rooted shoot cultures in vitro. Plant Cell Tiss Org Cult 28:151–157

    CAS  Google Scholar 

  • Swarna J, Ravindhran R (2012) Agrobacterium rhizogenes–mediated hairy root induction of Momordica charantia Linn. and the detection of charantin, a potent hypoglycaemic agent in hairy roots. Res J Biotechnol 7:227–231

    CAS  Google Scholar 

  • Talano MA, Wevar Oller AL, Gonzalez PS et al (2012) Hairy roots their multiple applications and recent patents. Recent Pat Biotechnol 6:115–133

    CAS  PubMed  Google Scholar 

  • Taware AS, Mukadam DS, Chavan AM et al (2010) Comparative studies of in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni). Int J Integr Biol 9:10–15

    Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    CAS  Google Scholar 

  • Tiwari AK, Rao JM (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 83:30–38

    CAS  Google Scholar 

  • Toivonen L (1993) Utilization of hairy root cultures for production of secondary metabolites. Biotechnol Prog 9:12–20

    CAS  Google Scholar 

  • Totté N, Charon L, Rohmer M et al (2000) Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetrahedron Lett 41:6407–6410

    Google Scholar 

  • Tran MH, Hoang DM, Minh PTH et al (2007) a-amylase and protein tyrosine phosphatase 1B inhibitory of some Vietnamese medicinal plants used to treat diabetes. Nat Prod Sci 13:311–316

    Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F et al (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 98:13449–13453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Citovsky V (2008) Agrobacterium: from biology to biotechnology. Springer, New York

    Google Scholar 

  • Tzfira T, Li J, Lacroix B et al (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    CAS  PubMed  Google Scholar 

  • Udomsom N, Rai A, Suzuki H et al (2016) Function of AP2/ERF transcription factors involved in the regulation of specialized metabolism in Ophiorrhiza pumila revealed by transcriptomics and metabolomics. Front Plant Sci 7:1861

    PubMed  PubMed Central  Google Scholar 

  • Van Moerkercke A, Steensma P, Schweizer F et al (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci U S A 112:8130–8135

    PubMed  PubMed Central  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    CAS  Google Scholar 

  • Vereshchagina YV, Bulgakov VP, Grigorchuk VP et al (2014) The rolC gene increases caffeoylquinic acid production in transformed artichoke cells. Appl Microbiol Biotechnol 98:7773–7780

    CAS  PubMed  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    CAS  Google Scholar 

  • Vickers A, Zollman C, Lee R (2001) Herbal medicine. West J Med 175:125–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    CAS  Google Scholar 

  • Vladimirov I, Matveeva T, Lutova L (2015) Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Genetika 51:137–146

    CAS  PubMed  Google Scholar 

  • Wang H, Du YJ, Song HC (2010) α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem 123:6–13

    CAS  Google Scholar 

  • Wang GG, Lu XH, Li W et al (2011) Protective effects of luteolin on diabetic nephropathy in stz-induced diabetic rats. Evid Based Complement Altern Med 2011:323171. https://doi.org/10.1155/2011/323171

    CrossRef  Google Scholar 

  • Wang Y, Shen Y, Shen Z et al (2016) Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures. Plant Physiol Biochem 107:364–373

    CAS  PubMed  Google Scholar 

  • White FF, Taylor BH, Huffman GA et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wysokinska H, Chmiel A (1997) Transformed root cultures for biotechnology. Acta Biotechnol 17:131–159

    CAS  Google Scholar 

  • Xiao Y, Zhang L, Gao S et al (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root ultures. PLoS One 6:e29713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav N, Vanderleyden J, Bennett D et al (1982) Short direct repeats flank the T-DNA on a nopaline Ti Plasmid. Proc Natl Acad Sci U S A 79:6322–6326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AS, Singh S, Dhyani D et al (2011) A review on the improvement of stevia Stevia rebaudiana (Bertoni). Can J Plant Sci 91:1–27

    Google Scholar 

  • Yamazaki T, Flores HE (1991) Examination of steviol glycoside production by hairy root and shoot cultures of Stevia rebaudiana. J Nat Prod 54:986–992

    CAS  Google Scholar 

  • Yang YW, Chang CW (1979) In vitro plant regeneration from leaf explants of Stevia rebaudiana Bertoni. Z Pflanzen Physiol 93:337–343

    Google Scholar 

  • Yang Y, Huang S, Han Y et al (2015) Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol Biochem 86:174–118

    CAS  PubMed  Google Scholar 

  • Yeung AWK, Tzvetkov NT, Durazzo A et al (2020) Natural products in diabetes research: quantitative literature analysis. Nat Prod Res:1–15. https://doi.org/10.1080/14786419.2020.1821019

  • Yokoyama R, Hirose T, Fujii N (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is acti vated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22

    CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Sun H et al (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152

    PubMed  Google Scholar 

  • Zhang Y, Massel K, Godwin ID et al (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Cui MY, Levsh O et al (2018) Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4'-deoxyflavones in Scutellaria baicalensis. Mol Plant 11:135–148

    CAS  PubMed  Google Scholar 

  • Zhou W, Huang Q, Wu X et al (2017) Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 7:10554

    PubMed  PubMed Central  Google Scholar 

  • Zupan J, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Results concerning S. rebaudiana hairy roots culture were obtained as part of experiments carried out in projects funded by the National Science Centre (no. 2012/05/B/NZ9/01035 and no. 2013/09/N/NZ9/01650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Libik-Konieczny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Libik-Konieczny, M., Michalec-Warzecha, Ż., Ślesak, I., Pistelli, L. (2021). Rhizobium rhizogenes-Mediated Genetic Transformation of Antidiabetic Plants. In: Gantait, S., Verma, S.K., Sharangi, A.B. (eds) Biotechnology of Anti-diabetic Medicinal Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-3529-8_12

Download citation