Skip to main content

Potential of Stem Cell Therapy to Combat Mastitis in Dairy Animals

  • Chapter
  • First Online:
Stem Cells in Veterinary Science

Abstract

Mastitis is the inflammation of the secretory or alveolar part of the udder and is the most expensive disease of the dairy industry. The estimated economic loss in the US dairy industry alone is approximately $2 billion annually. The substantial increase in economic losses, owing to the high occurrence rate and low recovery rate, is alarming for the dairy industry, which allures the heed of researchers, policymakers, veterinarians, and dairy owners. Therefore, there is an increasing necessity to treat and prevent the highly prevalent disease in dairy animals using the most efficacious protocol. Moreover, since the last more than 70 years, numerous pharmacological and animal husbandry-based approaches are being practiced to control mastitis in dairy herds, but results are below the expectations. This chapter discusses causative agents of mastitis, the pathophysiology of its development, and the potential application of stem cells as regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bruno RD, Smith GH (2011) Role of epithelial stem/progenitor cells in mammary cancer. Gene Expr 15(3):133–140

    PubMed  Google Scholar 

  • Capuco AV (2007) Identification of putative bovine mammary epithelial stem cells by their retention of labeled DNA strands. Exp Biol Med 232:1381–1390

    CAS  Google Scholar 

  • Capuco AV, Ellis SE (2013) Comparative aspects of mammary gland development and homeostasis. Annu Rev Anim Biosci 1:179–202

    PubMed  Google Scholar 

  • Capuco AV, Choudhary RK, Daniels KM et al (2012) Bovine mammary stem cells: cell biology meets production Agriculture. Animal 6(3):382–393

    CAS  PubMed  Google Scholar 

  • Casteilla L, Planat-Benard V, Laharrague P, Cousin B (2011) Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 26(3):25–33

    Google Scholar 

  • Chepko G, Smith GH (1997) Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29:239–253

    CAS  PubMed  Google Scholar 

  • Choudhary RK, Evock-Clover CM, Capuco AV (2012) Expression of novel, putative stem cell markers in prepubertal and lactating bovine Mammary glands. J Anim Sci 89(1):180–181

    Google Scholar 

  • Choudhary RK, Li RW, Evock-Clover CM et al (2013) Comparison of the transcriptomes of long-term label retaining-cells and control cells microdissected from mammary epithelium: an initial study to characterize potential stem/progenitor cells. Front Oncol 3:21. https://doi.org/10.3389/fonc.2013.00021

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa CRM, Feitosa MLT, Rocha AR, Bezerra DO, Leite YKC, Argolo Neto NM et al (2019) Adipose stem cells in reparative goat mastitis mammary gland. PLoS ONE 14(10):e0223751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan DV, Kerr DE, Wall RJ (2005) Engineering disease resistant cattle. Transgenic Res 14:563–567

    CAS  PubMed  Google Scholar 

  • Ferguson DJ (1985) Ultrastructural characterisation of the proliferative (stem?) cells in the parenchyma of the normal resting breast. Virchows Arch A Pathol Anat Histopathol 407:379–385

    CAS  PubMed  Google Scholar 

  • Gao Y, Zhu Z, Zhao Y, Hua J, Ma Y, Guan W (2015) Multilineage potential research of bovine amniotic fluid mesenchymal stem cells. Int J Mol Sci 15(3):3698–3710

    Google Scholar 

  • Halasa T, Huijps K, Osteras O et al (2007) Economic effects of bovine mastitis and mastitis management: a review. Vet Q 29:18–31

    CAS  PubMed  Google Scholar 

  • Halasa T, Nielen M, De Roos APW et al (2009) Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J Dairy Sci 92(2):599–606

    CAS  PubMed  Google Scholar 

  • Harman RM, Yang S, He MK, Van de Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157

    PubMed  PubMed Central  Google Scholar 

  • Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4:239–248

    CAS  PubMed  Google Scholar 

  • Hovey RC, McFadden TB, Akers RM (1999) Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia 4(1):53–68

    CAS  PubMed  Google Scholar 

  • Jiang S, Lee BC, Fu Y et al (2010) Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation. PLoS ONE 5(3):e9707

    PubMed  PubMed Central  Google Scholar 

  • Jones GM (2009) Understanding the basics of mastitis. VCE Publications. https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/404/404-233/404-233_pdf.pdf. Accessed 10 Oct 2020

  • Kaushik R, Singh KP, Kumari A et al (2013) Isolation, characterization, and EGFP expression in the buffalo (Bubalus bubalis) mammary gland epithelial cell line. In Vitro Cell Dev Biol Anim 49(1):1–7

    CAS  PubMed  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    CAS  PubMed  Google Scholar 

  • Kour S, Neelesh S, Huma ZI, Devi S, Ahmed T, Singh R, Kumar A (2020) Prevalence of mastitis in cow heifers and associated risk factors in Himalayan region, India. J Environ Biol 41:796–802

    Google Scholar 

  • Krasnodembskaya A et al (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ledet MM, Vasquez AK, Rauner G, Bichoupan AA, Moroni P, Nydam DV, Van de Walle GR (2018) The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity. Sci Rep 8:5378

    PubMed  PubMed Central  Google Scholar 

  • McDougall S, Parker KI, Heuer C et al (2009) A review of prevention and control of heifer mastitis via non-antibiotic strategies. Vet Microbiol 134:177–185

    CAS  PubMed  Google Scholar 

  • Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30:804–810

    CAS  PubMed  Google Scholar 

  • Muschler J, Streuli CH (2010) Cell –matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2:a003202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nickerson SC (2009) Control of heifer mastitis: antimicrobial treatment-an overview. Vet Microbiol 134:128–135

    CAS  PubMed  Google Scholar 

  • Paape M, Mehrzad J, Zhao X, Detilleux J, Burvenich C (2002) Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia 7:109–121

    PubMed  Google Scholar 

  • Pantschenko AG, Woodcock-Mitchell J, Bushmich SL, Yang TJ (2000) Establishment and characterization of caprine mammary epithelial cell (CMEC). In Vitro Cell Dev Biol Anim 36(1):26–37

    CAS  PubMed  Google Scholar 

  • Peralta OA, Carrasco C, Vieytes C, Tamayo MJ, Muñoz I, Sepulveda S, Tadich T, Duchens M (2020) Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci Rep 10:2843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pond AC, Bin X, Batts T et al (2013) Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function. Stem Cells 31:178–189

    CAS  PubMed  Google Scholar 

  • Rauner G, Barash I (2012) Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS ONE 7(1):e30113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio RV, Chiaratti MR, Santos DCN et al (2015) Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res 14:53–62

    CAS  PubMed  Google Scholar 

  • Sharma N, Jeong DK (2013) Stem cell research: a novel boulevard towards improved bovine mastitis management. Int J Biol Sci 9(8):818–829

    PubMed  PubMed Central  Google Scholar 

  • Sharma N, Gupta SK, Sharma U et al (2007) Treatment of clinical mastitis in buffalo-A case report. Buffalo Bull 26(2):56–58

    Google Scholar 

  • Sharma N, Hyun KJ, Sodhi SS, Do Huynh L, Sung-Woo K, Jong OS, Dong-Kee J (2015) Differentiation dynamics of mammary epithelial stem cells from Korean Holstein dairy cattle under ECM-free conditions. J Biomol Struct Dyn 33(12):2633–2654

    CAS  PubMed  Google Scholar 

  • Sharma N, Huynh DL, Kim SW, Ghosh M, Sodhi SS, Singh A, Kim NE, Lee SJ, Hussain K, Oh SJ, Jeong DK (2017) A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 8(61):104272–104285

    PubMed  PubMed Central  Google Scholar 

  • Sharma N, Huma ZI, Singh SG, Navjot SS, Gupta SK, Upadhyay SR (2018) Prevalence of clinical and subclinical mastitis in buffaloes of Jammu region. Int J Agric Environ Biotechnol 11(2):415–420

    Google Scholar 

  • Smith GH, Chepko AG (2001) Mammary epithelial stem cells. Microsc Res Tech 52:190–203

    CAS  PubMed  Google Scholar 

  • Smith GH, Medina D (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 90:173–183

    PubMed  Google Scholar 

  • Ting WJ, Shaw SW, Hii LY, Lin T-Y, Chang S-C, Liu K-Y, Shen P-C, Chen T-J, Peng S-Y (2020) Therapeutic effects of conditioned e DPBS from amniotic stem cells on lactating cow mastitis. Taiwan J Obstet Gynecol 59:520–526

    PubMed  Google Scholar 

  • Toh WS, Foldager CB, Pei M, Hui JHP (2014) Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev Rep 10:686–696

    CAS  PubMed  Google Scholar 

  • VanKeymeulen A, Rocha AS, Ousset M et al (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193

    CAS  Google Scholar 

  • Wellnitz O, Kerr DE (2004) Cryopreserved bovine mammary cells to model epithelial response to infection. Vet Immunol Immunopathol 101:191–202

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Devi, S., Bacic, G. (2021). Potential of Stem Cell Therapy to Combat Mastitis in Dairy Animals. In: Choudhary, R.K., Choudhary, S. (eds) Stem Cells in Veterinary Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-3464-2_5

Download citation

Publish with us

Policies and ethics