Skip to main content

Prospects of Mesenchymal Stem Cell Secretome in Veterinary Regenerative Therapy

  • Chapter
  • First Online:
Stem Cells in Veterinary Science

Abstract

Regenerative medicine, a branch of translational research, comprises the generation and use of therapeutic stem cells. The mesenchymal stem cells (MSCs) used in preclinical models for tissue engineering of connective tissues have shown it as a promising agent in rebuilding damaged tissues like nerve injury, fracture, ligament and cartilage, liver, heart, etc. Paracrine mechanisms are considered the primary mode of action in adult stem cell signaling and therapy. MSCs secrete various cytokines and growth factors, including autocrine and paracrine actions. The promise of cell-free therapy has led to the development of products derived from stem cells. Microvesicles/exosomes derived from MSCs are exploited in therapeutic uses as pharmaceutical agents’ delivery. Another central area of application of extracellular vesicles (EVs) is immune therapy due to their anti-inflammatory and immunomodulatory effects. Most translational research regarding mesenchymal stem cells and their conditioned media (CM) have been conducted in human subjects, and little work has been done in livestock and pets, as livestock and pets also encounter similar ailments. Hence, there is an excellent scope of stem cell secretome in veterinary regenerative therapy, especially in treating diseases like paraplegia or spinal cord injury, diabetic wounds, ligament/tendon injury, and bone injury/fracture. It may be an essential component of veterinary pharmaceuticals shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreu Z, Yanez-Mo M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442

    PubMed  PubMed Central  Google Scholar 

  • Ansari MM, Sreekumar TR, Chandra V, Dubey PK, Sai Kumar G, Amarpal, Sharma GT (2013) Therapeutic potential of canine bone marrow-derived mesenchymal stem cells and its conditioned media in diabetic rat wound healing. J Stem Cell Res Ther 3:141. https://doi.org/10.4172/2157-7633.1000141

    Article  CAS  Google Scholar 

  • Aryan A, Bayat M, Bonakdar S, Taheri S, Haghparast N, Bagheri M, Piryaei A, Abdollahifar MA (2019) Human bone marrow mesenchymal stem cell conditioned medium promotes wound healing in deep second-degree burns in male rats. Cells Tissues Organs 206:317–329

    Google Scholar 

  • Aryani A, Denecke B (2016) Exosomes as a nano delivery system: a key to the future of neuro medicine? Mol Neurobiol 53:818–834

    CAS  PubMed  Google Scholar 

  • Beer L, Mildner M, Ankersmit HJ (2017) Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 5(7):article 170

    Google Scholar 

  • Bhat IA, Shivkumar TB, Somal A, Sriti P, Bharti MK, Panda BSK, Indu B, Verma M, Joseph A, Sonwane A, Sai Kumar G, Amarpal, Chandra V, Sharma GT (2019) An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol 234:2705–2718

    CAS  PubMed  Google Scholar 

  • Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    CAS  PubMed  Google Scholar 

  • Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 16:81

    CAS  Google Scholar 

  • Chen Q, Liang Q, Zhuang W et al (2018) Tenocyte proliferation and migration promoted by rat bone marrow mesenchymal stem cell-derived conditioned medium. Biotechnol Lett 40(1):215–224

    CAS  PubMed  Google Scholar 

  • Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X et al (2019) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52(5):e12669

    PubMed  PubMed Central  Google Scholar 

  • Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A et al (2019) Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20(11):2698

    CAS  PubMed Central  Google Scholar 

  • Costa-Almeida R, Calejo I, Gomes ME (2019) Mesenchymal stem cells empowering tendon regenerative therapies. Int J Mol Sci 20(12):3002. https://doi.org/10.3390/ijms20123002

    Article  CAS  PubMed Central  Google Scholar 

  • Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25(6):898–908

    CAS  PubMed  Google Scholar 

  • Dimov N, Kastner E, Hussain M, Perrie Y, Szita N (2017) Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep 7:12045

    PubMed  PubMed Central  Google Scholar 

  • Dong L, Hao H, Liu J, Ti D, Tong C, Hou Q, Li M, Zheng J, Liu G, Fu X et al (2017) A conditioned medium of umbilical cord mesenchymal stem cells overexpressing Wnt7a promotes wound repair and regeneration of hair follicles in mice. Stem Cells Int 2017:1–13

    Google Scholar 

  • Driscoll J, Patel T (2019) The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. J Gastroenterol 54(9):763–773

    PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleury A, Martinez MC, Le Lay S (2014) Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 5:370

    PubMed  PubMed Central  Google Scholar 

  • Fukuoka H, Suga H, Narita K, Watanabe R, Shintani S (2012) The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells. Am J Cosm Surg 29(4):273–282

    Google Scholar 

  • Furuta YT, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N et al (2016) Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 5:1620–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gama KB, Santos DS, Evangelista AF, Silva DN, de Alcantara AC, dos Santos RR, Soares MBP, Villarreal CF (2018) Conditioned medium of bone marrow-derived mesenchymal stromal cells as a therapeutic approach to neuropathic pain: a preclinical evaluation. Stem Cells Int 2018:8179013. https://doi.org/10.1155/2018/8179013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT (2018) Mesenchymal stem cell research in veterinary medicine (a review). Curr Stem Cell Res Ther 13(8):645–657. https://doi.org/10.2174/1574888X13666180517074444

    Article  CAS  PubMed  Google Scholar 

  • Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316:2213–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ (2016) Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res 118:95–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J et al (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 68:4229–4238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph A, Indu B, Bhat IA, Pandey S, Bharti MB, Verma M, Singh AP, Ansari MM, Chandra V, Saikumar G, Amarpal, Sharma GT (2020) Mesenchymal stem cell-conditioned media: a novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 235:5555–5569. https://doi.org/10.1002/jcp.29486

    Article  CAS  PubMed  Google Scholar 

  • Kim HO, Choi S (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10(3):93–101

    CAS  Google Scholar 

  • Kim HO, Choi SM, Kim HS (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10(3):93–101

    CAS  Google Scholar 

  • Kim YG, Choi J, Kim K (2020) Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J 15(12):e2000082. https://doi.org/10.1002/biot.202000082

    Article  CAS  PubMed  Google Scholar 

  • Klymiuk MC, Balz N, Elashry MI, Heimann M, Wenisch S, Arnhold S (2019) Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res 15:42

    PubMed  PubMed Central  Google Scholar 

  • Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Łos MJ (2019) Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 843:307–315

    CAS  PubMed  Google Scholar 

  • Kupcova SH (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211

    Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    CAS  PubMed  Google Scholar 

  • Lange-Consiglio A, Rossi D, Tassan S, Perego R, Cremonesi F, Parolini O (2013) Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev 22(22):3015–3024

    CAS  PubMed  Google Scholar 

  • Lee Y, El Andaloussi S, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21(R1):R125–R134

    CAS  PubMed  Google Scholar 

  • Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP et al (2002) Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng 8:911–920

    CAS  PubMed  Google Scholar 

  • Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17:171–177

    CAS  PubMed  Google Scholar 

  • Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43

    PubMed  Google Scholar 

  • Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18:1479–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawitan JA (2014) Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int 2014:7–9

    Google Scholar 

  • Qin Y, Wang L, Gao Z, Chen G, Zhang C (2016) Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 6:21961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashed HM, Bayraktar EK, Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18:E538

    Google Scholar 

  • Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856

    CAS  PubMed  Google Scholar 

  • Ren Z, Qi Y, Sun S, Tao Y, Shi R (2020) Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair. Stem Cells Dev 29(23):1467–1478

    CAS  PubMed  Google Scholar 

  • Robey PG (2011) Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev 17:423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6:2173–2185

    PubMed  PubMed Central  Google Scholar 

  • Shen H, Yoneda S, Abu-Amer Y, Guilak F, Gelberman RH (2019) Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. J Orthop Res 2019:1–11

    Google Scholar 

  • Shimode K, Iwasaki N, Majima T et al (2007) Bone marrow stromal cells act as feeder cells for tendon fibroblasts through soluble factors. Tissue Eng 13(2):333–341

    CAS  PubMed  Google Scholar 

  • Somal A, Bhat IA, Indu B, Pandey S, Panda BSK, Thakur N, Sarkar M, Chandra V, Saikumar G, Sharma GT (2016) A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS One 11(6):e0156821. https://doi.org/10.1371/journal.pone.0156821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somal A, Bhat IA, Indu B, Singh AP, Panda BSK, Desingu PA, Pandey S, Bharti MK, Amarpal, Saikumar G, Chandra V, Sharma GT (2017) Impact of cryopreservation on caprine fetal adnexa derived stem cells and its evaluation for growth kinetics, phenotypic characterization and wound healing potential in xenogenic rat model. J Cell Physiol 232(8):2186–2200

    CAS  PubMed  Google Scholar 

  • Sreekumar TR, Ansari MM, Chandra V, Sharma GT (2014) Isolation and characterization of buffalo Wharton’s jelly derived mesenchymal stem cells. J Stem Cell Res Ther 4:207. https://doi.org/10.4172/2157-7633.1000207

    Article  CAS  Google Scholar 

  • Sun G, Li G, Li D, Huang W, Zhang R, Zhang H et al (2018) hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl 89:194–204

    CAS  PubMed  Google Scholar 

  • Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, Yang Z, Yan H, Cui C, Tan W (2020) Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett 12:103

    CAS  Google Scholar 

  • Tachida Y, Sakurai H, Okutsu J et al (2015) Proteomic comparison of the secreted factors of mesenchymal stem cells from bone marrow, adipose tissue and dental pulp. J Proteomics Bioinform 8(12):266

    CAS  Google Scholar 

  • Takeuchi R, Katagiri W, Endo S, Kobayashi T (2019) Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One 14(11):e0225472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YD (2019) Functional multipotency of stem cells and recovery neurobiology of injured spinal cords. Cell Transplant 28(4):451–459

    PubMed  PubMed Central  Google Scholar 

  • Tomasoni S, Longaretti L, Rota C et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22(5):772–780

    CAS  PubMed  Google Scholar 

  • Trams EG, Lauter CJ, Norman Salem J, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70

    CAS  PubMed  Google Scholar 

  • Tsai MJ, Liou DY, Lin YR, Weng CF, Huang MC, Huang WC et al (2018) Attenuating spinal cord injury by conditioned medium from bone marrow mesenchymal stem cells. J Clin Med 8(1)

    Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  • Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E, Cizkova D (2020) Stem cell conditioned medium treatment for canine spinal cord injury: pilot feasibility study. Int J Mol Sci 21:5129. https://doi.org/10.3390/ijms21145129

    Article  CAS  PubMed Central  Google Scholar 

  • Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(1852):1–24

    Google Scholar 

  • Voulgari-Kokota A, Fairless R, Karamita M, Kyrargyri V, Tseveleki V, Evangelidou M et al (2012) Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 236(1):161–170

    CAS  PubMed  Google Scholar 

  • Wang CY, Yang HB, Hsu HS et al (2011) Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J Tissue Eng Regen Med 2011:1–11

    Google Scholar 

  • Wang X, Omar O, Vazirisani F, Thomsen P, Ekström K (2018) Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS One 13:e0193059

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, He G, Guo Y et al (2019) Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med 23(8):5475–5485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Wang W, Li L et al (2013) The relative contribution of paracrine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One 8(3):e59020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS, Lee JH, Baik CS, Kim A, Cho KS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid–derived mesenchymal stem cells. Stem Cells Dev 19:887–902

    CAS  PubMed  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A et al (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y et al (2018) MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol (Amst) 2018:8402390

    Google Scholar 

  • Zhou Y, Tian T, Zhu Y, Jaffar AD, Hu F, Qi Y, Sun B, Xiao Z (2017) Exosomes transfer among different species cells and mediating miRNAs delivery. J Cell Biochem 118:4267–4274

    CAS  PubMed  Google Scholar 

  • Zomer HD, Varela GKDS, Delben PB, Heck D, Jeremias TDS, Trentin AG (2019) In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J Tissue Eng Regen Med 13:729–741

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, V., Sharma, G.T. (2021). Prospects of Mesenchymal Stem Cell Secretome in Veterinary Regenerative Therapy. In: Choudhary, R.K., Choudhary, S. (eds) Stem Cells in Veterinary Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-3464-2_16

Download citation

Publish with us

Policies and ethics