Skip to main content

Biomaterials and Scaffolds in Stem Cell Therapy

  • Chapter
  • First Online:
Stem Cells in Veterinary Science

Abstract

In the recent past, stem cell therapy has considerably revolutionized regenerative therapy; however, still, it is not perfect for treating diseases due to several limitations like transplantation of stem cells alone exhibits low therapeutic efficacy due to poor viability and regenerative activity of transplanted cells. There is a high scope for the improvement of ex vivo stem cell culture and its delivery system. Growth factors and cytokines regulate stem cell proliferation and differentiation; besides this, they also require biophysical cues at their niche. To overcome these limitations, techniques of tissue engineering use scaffolds. Scaffold opens new avenues for producing engineered tissue substitutes and thus by quality organ repair. Biophysical signals from bioscaffolds such as mechanical forces, nanotopography, stiffness of the matrix, and surface features of the biomaterial influence stem cells’ fate. Several types of scaffolds are being used derived from natural biomaterials or synthetic materials having their own merits and demerits. Biodegradability and biologically active properties are the major advantages of natural bioscaffolds over synthetic scaffolds. However, the major drawback of natural scaffolds is the risk of carrying cross-contaminated from the sources. Technologies evolved to mold the biomaterials into three-dimensional (3D) scaffolds to simulate tissue architecture to promote cell proliferation and differentiation. Combining stem cell technologies with biomaterial-based scaffolds enhance stem cell viability, differentiation, and therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477

    CAS  PubMed  Google Scholar 

  • Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Google Scholar 

  • Angelos MG, Kutala VK, Torres CA, He G, Stoner JD, Mohammad M, Kuppusamy P (2006) Hypoxic reperfusion of the ischemic heart oxygen radical generation. Am J Physiol-Heart Circul Physiol 290:H341–H347

    CAS  Google Scholar 

  • Ansari MM, Sreekumar TR, Chandra V, Dubey PK, Sai Kumar G, Amarpal, Sharma GT (2013) Therapeutic potential of canine bone marrow-derived mesenchymal stem cells and its conditioned media in diabetic rat wound healing. J Stem Cell Res Ther 3:141. https://doi.org/10.4172/2157-7633.1000141

    Article  CAS  Google Scholar 

  • Antman-Passig M, Levy S, Gartenberg C, Schori H, Shefi O (2017) Mechanically oriented 3D collagen hydrogel for directing neurite growth. Tissue Eng A 23(9–10):403–414

    CAS  Google Scholar 

  • Axpe E, Oyen ML (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17(12):1976

    PubMed Central  Google Scholar 

  • Bellon JM, Rodriguez M, Garcia-Honduvilla N, Gomez-Gil V, Pascual G, Bujan J (2009) Comparing the behavior of different polypropylene meshes (heavy and lightweight) in an experimental model of ventral hernia repair. J Biomed Mater Res B Appl Biomater 89:448e55

    Google Scholar 

  • Bharti MK, Bhat IA, Pandey S et al (2020) Effect of cryopreservation on therapeutic potential of canine bone marrow derived mesenchymal stem cells augmented mesh scaffold for wound healing in guinea pig. Biomed Pharmacother 121:109573. https://doi.org/10.1016/j.biopha.2019.109573

    Article  CAS  PubMed  Google Scholar 

  • Bhat IA, Shivkumar TB, Somal A, Sriti P et al (2019) An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol 234:2705–2718

    CAS  PubMed  Google Scholar 

  • Binnebosel M, von Trotha KT, Jansen PL, Conze J, Neumann UP, Junge K (2011) Biocompatibility of prosthetic meshes in abdominal surgery. Semin Immunopathol 3:235e43

    Google Scholar 

  • Blazquez R, Miguel F, Margallo S, Alvarez V, Uson A, Casado G (2015) Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization. Acta Biomater 31:1742–1761

    Google Scholar 

  • Boontheekul T, Hill EE, Kong HJ, Mooney DJ (2007) Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 13(7):1431–1442

    CAS  PubMed  Google Scholar 

  • Brown CN, Finch JG (2010) Which mesh for hernia repair? Ann R Coll Surg Eng 92:272–278

    CAS  Google Scholar 

  • Bulcke AIVD, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Macromolecules 1(1):31–38

    Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng 15(2):205–219

    CAS  Google Scholar 

  • Chang SH, Lin HTV, Wu GJ, Tsai GJ (2015) pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81

    CAS  PubMed  Google Scholar 

  • Charriere G, Bejot M, Schnitzler L, Ville G, Hartmann DJ (1989) Reactions to a bovine collagen implant. Clinical and immunologic study in 705 patients. J Am Acad Dermatol 21(6):1203–1208

    CAS  PubMed  Google Scholar 

  • Choudhury D, Tun HW, Wang T, Naing MW (2018) Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 36(8):787–805

    CAS  PubMed  Google Scholar 

  • Cleland JG, Coletta AP, Abdellah AT, Cullington D, Clark AL, Rigby AS (2008) Clinical trials update from the American Heart Association 2007: CORONA, RethinQ, MASCOT, AF-CHF, HART, MASTER, POISE and stem cell therapy. Eur J Heart Fail 10(1):102–108

    PubMed  Google Scholar 

  • Cozad MJ, Grant DA, Bachman SL, Grant DN, Ramshaw BJ, Grant SA (2010) Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater 94:455e62

    Google Scholar 

  • Deprest J, Claerhout F, Zheng F, Kostantinovic M, Spelzini F, Guelinckx I (2005) Synthetic and biodegradable prostheses in pelvic floor surgery. Int Congr Ser 1279:387–397

    Google Scholar 

  • Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK et al (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4:3896

    PubMed  PubMed Central  Google Scholar 

  • Dravida S, Gaddipati S, Griffith M, Merrett K, Madhira SL, Sangwan VS, Vemuganti GK (2008) A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2(5):263–271

    CAS  PubMed  Google Scholar 

  • Drukker M (2008) Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Semin Immunol 20(2):123–129

    CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    CAS  PubMed  Google Scholar 

  • Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    PubMed  Google Scholar 

  • Freyria AM, Ronziere MC, Cortial D, Galois L, Hartmann D, Herbage D, Mallein-Gerin F (2009) Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng 15(6):1233–1245

    CAS  Google Scholar 

  • Gao S, Mao F, Zhang B et al (2014) Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-jB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood) 239:366–375

    Google Scholar 

  • Gimi B, Nemani KV (2013) Advances in alginate gel microencapsulation of therapeutic cells. Crit Rev Biomed Eng 41(6):469–481

    PubMed  Google Scholar 

  • Gonzalez R, Rodeheaver GT, Moody DL, Foresman PA, Ramshaw BJ (2004) Resistance to adhesion formation: a comparative study of treated and untreated mesh products placed in the abdominal cavity. Hernia 8:213e9

    Google Scholar 

  • Gorodetsky R (2008) The use of fibrin based matrices and fibrin microbeads. FMB; for cell based tissue regeneration. Expert Opin Biol Ther 8:1831–1846

    CAS  PubMed  Google Scholar 

  • Grevious MA, Cohen M, Jean-Pierre F, Herrmann GE (2006) Structural and functional anatomy of the abdominal wall. Clin Plast Surg 33:169e79

    Google Scholar 

  • Hamou C, Callaghan MJ, Thangarajah H et al (2009) Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 123:45–55

    Google Scholar 

  • Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for non healing cutaneous wounds. Plast Reconstr Surg 125:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrell AG, Novitsky YW, Cristiano JA et al (2006) Prospective evaluation of adhesion formation and shrinkage of intra-abdominal prosthetics in a rabbit model. Am Surg 72(9):808–813. discussion 813–814

    PubMed  Google Scholar 

  • Haylock DN, Nilsson SK (2016) The role of hyaluronic acid in hemopoietic stem cell biology. Regen Med 1(4):437–445

    Google Scholar 

  • Hodde J, Hiles M (2007) Constructive soft tissue remodeling with a biologic extracellular matrix graft: overview and review of the clinical literature. Acta Chir Belg 107:641–647

    CAS  PubMed  Google Scholar 

  • Huang CY, Reuben PM, D’Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol 278:428–436

    PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 22(24):175–189

    Google Scholar 

  • Jeong H, Rho J, Shin JY, Lee DY, Hwang T, Kim KJ (2018) Mechanical properties and cytotoxicity of PLA/PCL films. Biomed Eng Lett 8(3):267–272

    PubMed  PubMed Central  Google Scholar 

  • Karp JM, Teo GSL (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    CAS  PubMed  Google Scholar 

  • Khan AA, Vishwakarma SK, Bardia A, Venkateshwarulu J (2014) Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ. J Artif Organs 17:291–300

    CAS  PubMed  Google Scholar 

  • Klinge U, Klosterhalfen B, Conze J et al (1998) Shrinking of polypropylene mesh in vivo: an experimental study in dogs. Eur J Surg 164:965e9

    Google Scholar 

  • Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 103:208e14

    Google Scholar 

  • Knaan-Shanzer S (2014) Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 32:603–608

    PubMed  Google Scholar 

  • Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P (2016) Hyaluronic acid and its derivatives in coating and delivery systems: applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthcare Mater 5:2841–2855

    CAS  Google Scholar 

  • Kolehmainen K, Willerth SM (2012) Preparation of 3D fibrin scaffolds for stem cell culture applications. J Vis Exp (61):3641

    Google Scholar 

  • Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357

    CAS  PubMed  Google Scholar 

  • Lee PW, Pokorski JK (2018) Poly (lactic-co-glycolic acid) devices: production and applications for sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(5):e1516

    PubMed  PubMed Central  Google Scholar 

  • Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP (2015) Micropatterning extracellular matrix proteins on electrospun fibrous substrate promote human mesenchymal stem cell differentiation toward neurogenic lineage. ACS Appl Mater Interfaces 8:563–573

    PubMed  Google Scholar 

  • Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadik BP, PedronHaba S, Skertich LJ, Harley BAC (2015) The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 67:297–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martino S, D’Angelo F, Armentano I, Kenny JM, Orlacchio A (2012) Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv 30(1):338–351

    CAS  PubMed  Google Scholar 

  • Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh (2015) A smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7(3):657–668

    PubMed  PubMed Central  Google Scholar 

  • Neuss S, Apel C, Buttler P et al (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29(3):302–313

    CAS  PubMed  Google Scholar 

  • Noth U, Schupp K, Heymer A et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7:447–455

    CAS  PubMed  Google Scholar 

  • Polisetti N, Sorokin L, Okumura N, Koizumi N, Kinoshita S, Kruse FE, Schlotzer-Schrehardt U (2017) Laminin-511 and-521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells. Sci Rep 7:5152

    PubMed  PubMed Central  Google Scholar 

  • Preissner KT, Reuning U (2011) Seminars in thrombosis and hemostasis. Thieme Medical Publishers, pp 408–424

    Google Scholar 

  • Procter L, Falco EE, Fisher JP, Roth JS (2009) Abdominal wall hernias and biomaterials. In: Gefen A (ed) Bioengineering research of chronic wounds, 1st edn. Springer, Berlin, pp 425–447

    Google Scholar 

  • Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312:2169–2179

    CAS  PubMed  Google Scholar 

  • Ravaglioli A, Krajewski A (1992) Bioceramics. Chapman & Hall, London. ISBN 978-94-010-5032-6

    Google Scholar 

  • Regehr KJ, Domenech M, Koepsel JT et al (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, Pascual G, Sotomayor S, Perez-Kohler B, Cifuentes A, Bellon JM (2011) Chemical adhesion barriers: do they affect the intraperitoneal behavior of a composite mesh? J Investig Surg 24:115e22

    Google Scholar 

  • Rogo-Gupta L (2013) Current trends in surgical repair of pelvic organ prolapsed. Curr Opin Obstet Gynecol 25:395–398

    PubMed  Google Scholar 

  • Rowland TJ, Miller LM, Blaschke AJ et al (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 19(8):1231–1240

    CAS  PubMed  Google Scholar 

  • Rustad KC, Wong VW, Sorkin M et al (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33:80–90

    CAS  PubMed  Google Scholar 

  • Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2):565–578

    CAS  PubMed  Google Scholar 

  • Saberski ER, Orenstein SB, Novitsky YW (2011) Anisotropic evaluation of synthetic surgical meshes. Hernia 15:47e52

    Google Scholar 

  • Salinas CN, Anseth KS (2009) Mesenchymal stem cells for craniofacial tissue regeneration: designing hydrogel delivery vehicles. J Dent Res 88(8):681–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salinas CN, Cole BB, Kasko AM, Anseth KS (2007) Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly (ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 13:1025–1034

    CAS  PubMed  Google Scholar 

  • Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 67–68:35–73

    PubMed  Google Scholar 

  • Schuurman W, Levett PA, Pot MW et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    CAS  PubMed  Google Scholar 

  • Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S (2018) PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 60:506–532

    CAS  PubMed  Google Scholar 

  • Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation—lessons from chondrogenesis. J Cell Sci 125:3703–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somal A, Bhat IA, Indu B, Pandey S et al (2016) A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS One 11(6):e0156821. https://doi.org/10.1371/journal.pone.0156821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swartzlander MD, Blakney AK, Amer LD, Hankenson KD, Kyriakides TR, Bryant SJ (2015) Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials 41:79–88

    CAS  PubMed  Google Scholar 

  • Tan L, Yu X, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513

    CAS  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC (2009) Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 3:208–217

    CAS  PubMed  Google Scholar 

  • Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    CAS  PubMed  Google Scholar 

  • Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27(36):5990–6003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE (2007) The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells 25(9):2235–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Hillas PJ, Baez JA et al (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18(2):103–119

    CAS  PubMed  Google Scholar 

  • Yannas IV, Burke JF, Orgill DP, Skrabut EM (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215(4529):174–176

    CAS  PubMed  Google Scholar 

  • Yao H, Xue J, Wang Q et al (2017) Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells. Mater Sci Eng 79:661–670

    CAS  Google Scholar 

  • Yoshikawa T, Mitsuno H, Nonaka I et al (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121:860–877

    CAS  PubMed  Google Scholar 

  • Yucel T, Lovett ML, Kaplan DL (2014) Silk-based biomaterials for sustained drug delivery. J Control Release 190:381–397

    CAS  PubMed  Google Scholar 

  • Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M (2018) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66–84

    CAS  PubMed  Google Scholar 

  • Zhang J, Lu X, Feng G et al (2016) Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res 366:129–142

    CAS  PubMed  Google Scholar 

  • Zollinger AJ, Smith ML (2017) Fibronectin, the extracellular glue. Matrix Biol 60:27–37

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, M.K., Chandra, V., Sharma, G.T. (2021). Biomaterials and Scaffolds in Stem Cell Therapy. In: Choudhary, R.K., Choudhary, S. (eds) Stem Cells in Veterinary Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-3464-2_15

Download citation

Publish with us

Policies and ethics