Skip to main content

Blood Loss and Transfusion in Children Undergoing Neurosurgery

  • Chapter
  • First Online:
  • 804 Accesses

Abstract

Pediatric blood transfusion practices during neurosurgical procedures differ from those of adults with regard to physiologic and hematologic considerations. Such differences dictate different guidelines for blood transfusion practices. In addition, pediatric patients are more susceptible to certain transfusion-related complications as compared to their adult counterparts. The pediatric patients present with more incidence of allergic, febrile non-hemolytic, and hypotensive transfusion reactions. Oxygen consumption in children is higher as compared to adults. As the myocardium of a newborn operates to the full potential to meet the higher oxygen demand, it may not be able to compensate for diminished oxygen capacity by further increasing cardiac output and, thus, have a higher likelihood of cardiac decompensation and ischemia under stressful circumstances. Optimal hemoglobin concentrations are, thus, higher in newborns as compared to the adults. The term neonate has mean hemoglobin values of 16.5 gm/dL, and the hemoglobin concentrations vary in children and adolescents in an age-related manner. Fetal hemoglobin (HbF) in the full-term newborn is highest at birth, decreasing at 5% per week until 6 months. Children undergoing neurosurgery are vulnerable to intraoperative bleeding; some preocedures are prone to massive blood loss. A diverse physiology from adults precludes the pediatric patients from enduring even a small quantity of blood loss over a short duration. The management, in such scenario, requires throrough understanding of body physiology, usage of blood products, and appropriate monitoring methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oakley FD, Woods M, Arnold S, Young PP. Transfusion reactions in pediatric compared with adult patients: a look at rate, reaction type, and associated products. Transfusion. 2015;55(3):563–70. https://doi.org/10.1111/trf.12827.

    Article  PubMed  Google Scholar 

  2. Barcelona SL, Thompson AA, Coté CJ. Intraoperative pediatric blood transfusion therapy: a review of common issues. Part I: hematologic and physiologic differences from adults; metabolic and infectious risks. Paediatr Anaesth. 2005;15(9):716–26. https://doi.org/10.1111/j.1460-9592.2005.01548.x.

    Article  PubMed  Google Scholar 

  3. Wang M. Iron deficiency and other types of anemia in infants and children. Am Fam Physician. 2016;93(4):270–8. http://europepmc.org/abstract/MED/26926814

    PubMed  Google Scholar 

  4. Edoh D, Antwi-Bosaiko C, Amuzu D. Fetal hemoglobin during infancy and in sickle cell adults. Afr Health Sci. 2006;6(1):51–4. https://doi.org/10.5555/afhs.2006.6.1.51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaufman DP, Khattar J, Lappin SL. Physiology, fetal hemoglobin. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK500011/.

    Google Scholar 

  6. Widness JA. Pathophysiology of Anemia during the neonatal period, including anemia of prematurity. Neoreviews. 2008;9(11):e520. https://doi.org/10.1542/neo.9-11-e520.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barcelona SL, Thompson AA, Coté CJ. Intraoperative pediatric blood transfusion therapy: a review of common issues. Part II: transfusion therapy, special considerations, and reduction of allogenic blood transfusions. Paediatr Anaesth. 2005;15(10):814–30. https://doi.org/10.1111/j.1460-9592.2004.01549.x.

    Article  PubMed  Google Scholar 

  8. Yates DRA, Davies SJ, Milner HE, Wilson RJT. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112(2):281–9. https://doi.org/10.1093/bja/aet307.

    Article  CAS  PubMed  Google Scholar 

  9. Vassal O, Desgranges F-P, Tosetti S, et al. Risk factors for intraoperative allogeneic blood transfusion during craniotomy for brain tumor removal in children. Pediatr Anesth. 2016;26(2):199–206. https://doi.org/10.1111/pan.12810.

    Article  Google Scholar 

  10. Ma L, Zhang J, Shen J, et al. Predictors for blood loss in pediatric patients younger than 10 years old undergoing primary posterior hemivertebra resection: a retrospective study. BMC Musculoskelet Disord. 2019;20(1):297. https://doi.org/10.1186/s12891-019-2675-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park C, Wormald J, Miranda BH, Ong J, Hare A, Eccles S. Perioperative blood loss and transfusion in Craniosynostosis surgery. J Craniofac Surg. 2018;29(1):112–5. https://doi.org/10.1097/SCS.0000000000004098.

    Article  PubMed  Google Scholar 

  12. Spilka J, Goobie SM. Tutorial 418 perioperative blood management in the pediatric patient. https://www.wfsahq.org/components/com_virtual_library/media/78863bb04ca7bc84b86c53c415bad66b-atow-418-00.pdf. 2020. Accessed 30 July 2020.

  13. Goobie SM, Haas T. Perioperative bleeding management in pediatric patients. Curr Opin Anaesthesiol. 2016;29(3):352–8. https://doi.org/10.1097/ACO.0000000000000308.

    Article  PubMed  Google Scholar 

  14. Nystrup KB, Stensballe J, Bøttger M, Johansson PI, Ostrowski SR. Transfusion therapy in paediatric trauma patients: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:21. https://doi.org/10.1186/s13049-015-0097-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Görlinger K, Pérez-Ferrer A, Dirkmann D, et al. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J Anesth. 2019;72(4):297–322. https://doi.org/10.4097/kja.19169.

    Article  CAS  Google Scholar 

  16. Vallet B, Robin E, Lebuffe G. Venous oxygen saturation as a physiologic transfusion trigger. Crit Care. 2010;14(2):213. https://doi.org/10.1186/cc8854.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee J-H, Park Y-H, Kim J-T. Current use of noninvasive hemoglobin monitoring in anesthesia. Curr Anesthesiol Rep. 2014;4(3):233–41. https://doi.org/10.1007/s40140-014-0070-9.

    Article  Google Scholar 

  18. Park Y-H, Lee J-H, Song H-G, Byon H-J, Kim H-S, Kim J-T. The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-oximeter in children undergoing neurosurgery. Anesth Analg. 2012;115(6):1302–7. https://doi.org/10.1213/ANE.0b013e31826b7e38.

    Article  CAS  PubMed  Google Scholar 

  19. Ali Algadiem E, Aleisa AA, Alsubaie HI, Buhlaiqah NR, Algadeeb JB, Alsneini HA. Blood loss estimation using gauze visual analogue. Trauma Mon. 2016;21(2):e34131. https://doi.org/10.5812/traumamon.34131.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kozek-Langenecker SA. Perioperative coagulation monitoring. Best Pract Res Clin Anaesthesiol. 2010;24(1):27–40. https://doi.org/10.1016/j.bpa.2009.09.009.

    Article  PubMed  Google Scholar 

  21. Weber CF, Zacharowski K. Perioperative point of care coagulation testing. Dtsch Arztebl Int. 2012;109(20):369–75. https://doi.org/10.3238/arztebl.2012.0369.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oswald E, Stalzer B, Heitz E, et al. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105(6):827–35. https://doi.org/10.1093/bja/aeq258.

    Article  CAS  PubMed  Google Scholar 

  23. New York State Council on Human Blood and TransfusionServices. Guidelines for transfusion of pediatric patients. https://www.wadsworth.org/sites/default/files/WebDoc/ped_tx_guidelines_2.pdf. 2016. Accessed 31 July 2020.

  24. Valentine SL, Bembea MM, Muszynski JA, et al. Consensus recommendations for RBC transfusion practice in critically ill children from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19(9):884–98. https://doi.org/10.1097/PCC.0000000000001613.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tasker RC, Turgeon AF, Spinella PC. Recommendations on RBC transfusion in critically ill children with acute brain injury from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19(9):S133–6. https://doi.org/10.1097/PCC.0000000000001589.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Akyildiz B, Ulgen Tekerek N, Pamukcu O, et al. Comprehensive analysis of liberal and restrictive transfusion strategies in pediatric intensive care unit. J Trop Pediatr. 2018;64(2):118–25. https://doi.org/10.1093/tropej/fmx037.

    Article  PubMed  Google Scholar 

  27. Ohrt-Nissen S, Bukhari N, Dragsted C, et al. Blood transfusion in the surgical treatment of adolescent idiopathic scoliosis-a single-center experience of patient blood management in 210 cases. Transfusion. 2017;57(7):1808–17. https://doi.org/10.1111/trf.14137.

    Article  PubMed  Google Scholar 

  28. Davies P, Robertson S, Hegde S, Greenwood R, Massey E, Davis P. Calculating the required transfusion volume in children. Transfusion. 2007;47(2):212–6. https://doi.org/10.1111/j.1537-2995.2007.01091.x.

    Article  PubMed  Google Scholar 

  29. Steinbicker AU, Wittenmeier E, Goobie SM. Pediatric non-red cell blood product transfusion practices: what’s the evidence to guide transfusion of the “yellow” blood products? Curr Opin Anaesthesiol. 2020;33(2):259–67. https://doi.org/10.1097/ACO.0000000000000838.

    Article  PubMed  Google Scholar 

  30. Liumbruno G, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Recommendations for the transfusion of plasma and platelets. Blood Transfus. 2009;7(2):132–50. https://doi.org/10.2450/2009.0005-09.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Diab YA, Wong ECC, Luban NLC. Massive transfusion in children and neonates. Br J Haematol. 2013;161(1):15–26. https://doi.org/10.1111/bjh.12247.

    Article  PubMed  Google Scholar 

  32. Blain S, Paterson N. Paediatric massive transfusion. BJA Educ. 2015;16(8):269–75. https://doi.org/10.1093/bjaed/mkv051.

    Article  Google Scholar 

  33. Livingston MH, Singh S, Merritt NH. Massive transfusion in paediatric and adolescent trauma patients: incidence, patient profile, and outcomes prior to a massive transfusion protocol. Injury. 2014;45(9):1301–6. https://doi.org/10.1016/j.injury.2014.05.033.

    Article  PubMed  Google Scholar 

  34. Hendrickson JE, Shaz BH, Pereira G, et al. Implementation of a pediatric trauma massive transfusion protocol: one institution’s experience. Transfusion. 2012;52(6):1228–36. https://doi.org/10.1111/j.1537-2995.2011.03458.x.

    Article  CAS  PubMed  Google Scholar 

  35. Noland DK, Apelt N, Greenwell C, et al. Massive transfusion in pediatric trauma: an ATOMAC perspective. J Pediatr Surg. 2019;54(2):345–9. https://doi.org/10.1016/j.jpedsurg.2018.10.040.

    Article  PubMed  Google Scholar 

  36. Haas T, Fries D, Velik-Salchner C, Oswald E, Innerhofer P. Fibrinogen in craniosynostosis surgery. Anesth Analg. 2008;106(3):725–31, table of contents. https://doi.org/10.1213/ane.0b013e318163fb26.

    Article  CAS  PubMed  Google Scholar 

  37. Fuentes-García D, Hernández-Palazón J, Sansano-Sánchez T, Acosta-Villegas F. Prothrombin complex concentrate in the treatment of multitransfusion dilutional coagulopathy in a paediatric patient. Br J Anaesth. 2011;106(6):912–3. https://doi.org/10.1093/bja/aer140.

    Article  PubMed  Google Scholar 

  38. Yanagisawa R, Tatsuzawa Y, Ono T, et al. Analysis of clinical presentations of allergic transfusion reactions and febrile non-haemolytic transfusion reactions in paediatric patients. Vox Sang. 2019;114(8):826–34. https://doi.org/10.1111/vox.12833.

    Article  PubMed  Google Scholar 

  39. Strobel E. Hemolytic transfusion reactions. Transfus Med Hemother. 2008;35(5):346–53. https://doi.org/10.1159/000154811.

    Article  PubMed  PubMed Central  Google Scholar 

  40. World Health Organization. Blood safety and availability: Key facts. World Health Organization Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability. 2020. Accessed 5 Aug 2020.

  41. Dhot PS. Amendments to Indian drugs and cosmetics act and rules pertaining to blood banks in armed forces. Med J Armed Forces India. 2005;61(3):264–6. https://doi.org/10.1016/S0377-1237(05)80170-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raza S, Ali Baig M, Chang C, et al. A prospective study on red blood cell transfusion related hyperkalemia in critically ill patients. J Clin Med Res. 2015;7(6):417–21. https://doi.org/10.14740/jocmr2123w.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Menis M, Anderson SA, Forshee RA, et al. Transfusion-associated circulatory overload (TACO) and potential risk factors among the inpatient US elderly as recorded in Medicare administrative databases during 2011. Vox Sang. 2014;106(2):144–52. https://doi.org/10.1111/vox.12070.

    Article  CAS  PubMed  Google Scholar 

  44. Bosboom JJ, Klanderman RB, Zijp M, et al. Incidence, risk factors, and outcome of transfusion-associated circulatory overload in a mixed intensive care unit population: a nested case-control study. Transfusion. 2018;58(2):498–506. https://doi.org/10.1111/trf.14432.

    Article  CAS  PubMed  Google Scholar 

  45. Wiersum-Osselton JC, Whitaker B, Grey S, et al. Revised international surveillance case definition of transfusion-associated circulatory overload: a classification agreement validation study. Lancet Haematol. 2019;6(7):e350–8. https://doi.org/10.1016/S2352-3026(19)30080-8.

    Article  PubMed  Google Scholar 

  46. Kim J, Na S. Transfusion-related acute lung injury; clinical perspectives. Korean J Anesthesiol. 2015;68(2):101–5. https://doi.org/10.4097/kjae.2015.68.2.101.

    Article  PubMed  PubMed Central  Google Scholar 

  47. McVey MJ, Kapur R, Cserti-Gazdewich C, Semple JW, Karkouti K, Kuebler WM. Transfusion-related acute lung injury in the perioperative patient. Anesthesiol J Am Soc Anesthesiol. 2019;131(3):693–715. https://doi.org/10.1097/ALN.0000000000002687.

    Article  Google Scholar 

  48. Wang D, Zhou G, Mao S, Chen J, Liu Y. Allogeneic blood transfusion in 163 children with acute lymphocytic leukemia (a STROBE-compliant article). Medicine (Baltimore). 2019;98(7):e14518. https://journals.lww.com/md-journal/Fulltext/2019/02150/Allogeneic_blood_transfusion_in_163_children_with.67.aspx

    Article  CAS  Google Scholar 

  49. Chao Y-H, Wu K-H. Transfusion-related immunomodulation in pediatric patients. Pediatr Neonatol. 2019;60(5):483–4. https://doi.org/10.1016/j.pedneo.2019.09.001.

    Article  PubMed  Google Scholar 

  50. Mohsen L, Youssef H, Abdelrahman H, et al. Effect of packed red blood cell transfusion on IL-8 and sICAM-1 in premature neonates at different postnatal ages. Pediatr Neonatol. 2019;60(5):537–42. https://doi.org/10.1016/j.pedneo.2019.01.010.

    Article  PubMed  Google Scholar 

  51. Murphy GJ, Reeves BC, Rogers CA, Rizvi SIA, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116(22):2544–52. https://doi.org/10.1161/CIRCULATIONAHA.107.698977.

    Article  PubMed  Google Scholar 

  52. Redlin M, Kukucka M, Boettcher W, et al. Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach. J Thorac Cardiovasc Surg. 2013;146(3):537–42. https://doi.org/10.1016/j.jtcvs.2012.09.101.

    Article  PubMed  Google Scholar 

  53. Kumba C, Querciagrossa S, Blanc T, Tréluyer J. Transfusion and postoperative outcome in pediatric abdominal surgery. J Clin Res Anesthesiol. 2018;1(1):1–8. https://asclepiusopen.com/journal-of-clinical-research-in-anesthesiology/volume-1-issue-1/3.php

    Article  Google Scholar 

  54. Lacroix J, Hébert P, Fergusson D, et al. The age of blood evaluation (ABLE) randomized controlled trial: study design. Transfus Med Rev. 2011;25(3):197–205. https://doi.org/10.1016/j.tmrv.2011.03.001.

    Article  PubMed  Google Scholar 

  55. Walsh TS, Stanworth S, Boyd J, et al. The Age of BLood Evaluation (ABLE) randomised controlled trial: description of the UK-funded arm of the international trial, the UK cost-utility analysis and secondary analyses exploring factors associated with health-related quality of life and health-c. Health Technol Assess. 2017;21(62):1–118. https://doi.org/10.3310/hta21620.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Steiner ME, Ness PM, Assmann SF, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med. 2015;372(15):1419–29. https://doi.org/10.1056/NEJMoa1414219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fergusson DA, Hébert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA. 2012;308(14):1443–51. https://doi.org/10.1001/2012.jama.11953.

    Article  CAS  PubMed  Google Scholar 

  58. Kozek-Langenecker SA, Afshari A, Albaladejo P, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382. https://doi.org/10.1097/EJA.0b013e32835f4d5b.

    Article  PubMed  Google Scholar 

  59. Badejo OA, Idowu OK, Balogun JA, Shokunbi WA, Amanor-Boadu SD, Shokunbi MT. Outcome of cranial surgery in Nigerian patients with hemoglobinopathies: a retrospective study. Surg Neurol Int. 2019;10:16. https://doi.org/10.4103/sni.sni_180_18.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fisher L. Perioperative care of the patient with sickle cell disease. AORN J. 2011;93(1):150–9. https://doi.org/10.1016/j.aorn.2010.08.019.

    Article  PubMed  Google Scholar 

  61. Stricker PA, Goobie SM, Cladis FP, et al. Perioperative outcomes and management in pediatric complex cranial vault reconstruction: a multicenter study from the pediatric craniofacial collaborative group. Anesthesiology. 2017;126(2):276–87. https://doi.org/10.1097/ALN.0000000000001481.

    Article  PubMed  Google Scholar 

  62. Lapierre F. Hemostatic Agents in Neurosurgery. In: D’Houtaud S, editor. . Rijeka: IntechOpen; 2012. p. Ch. 22. https://doi.org/10.5772/31319.

    Chapter  Google Scholar 

  63. Baro V, Denaro L, d’Avella D. Securing hemostasis in pediatric low-grade posterior cerebral fossa tumors: the value of thrombin-gelatin hemostatic matrix. Pediatr Neurosurg. 2018;53(5):330–6. https://doi.org/10.1159/000491824.

    Article  PubMed  Google Scholar 

  64. Aljaaly HA, Aldekhayel SA, Diaz-Abele J, Karunanayka M, Gilardino MS. Effect of erythropoietin on transfusion requirements for craniosynostosis surgery in children. J Craniofac Surg. 2017;28(5):1315–9. https://doi.org/10.1097/SCS.0000000000003717.

    Article  PubMed  Google Scholar 

  65. Sonzogni V, Crupi G, Poma R, et al. Erythropoietin therapy and preoperative autologous blood donation in children undergoing open heart surgery. Br J Anaesth. 2001;87(3):429–34. https://doi.org/10.1093/bja/87.3.429.

    Article  CAS  PubMed  Google Scholar 

  66. Dudley M, Miller RD, Turnbull JH. Patient blood management: transfusion therapy. In: Gropper MA, editor. Miller’s anesthesia. 9th ed. Philadelphia, PA: Elsevier; 2020. p. 1560–4.

    Google Scholar 

  67. Velardi F, Di Chirico A, Di Rocco C. Blood salvage in craniosynostosis surgery. Childs Nerv Syst. 1999;15(11):695–710. https://doi.org/10.1007/s003810050459.

    Article  CAS  PubMed  Google Scholar 

  68. McGirr A, Pavenski K, Sharma B, Cusimano MD. Blood conservation in neurosurgery: erythropoietin and autologous donation. Can J Neurol Sci/J Can des Sci Neurol. 2014;41(5):583–9. https://doi.org/10.1017/cjn.2014.14.

    Article  Google Scholar 

  69. Meneghini L, Zadra N, Aneloni V, Metrangolo S, Faggin R, Giusti F. Erythropoietin therapy and acute preoperative normovolaemic haemodilution in infants undergoing craniosynostosis surgery. Pediatr Anesth. 2003;13(5):392–6. https://doi.org/10.1046/j.1460-9592.2003.01091.x.

    Article  Google Scholar 

  70. Hans P, Collin V, Bonhomme V, Damas F, Born JD, Lamy M. Evaluation of acute normovolemic hemodilution for surgical repair of craniosynostosis. J Neurosurg Anesthesiol. 2000;12(1):33–6. https://journals.lww.com/jnsa/Fulltext/2000/01000/Evaluation_of_Acute_Normovolemic_Hemodilution_for.7.aspx

    Article  CAS  Google Scholar 

  71. Kumar R, Chakraborty I, Sehgal R. A prospective randomized study comparing two techniques of perioperative blood conservation: isovolemic hemodilution and hypervolemic hemodilution. Anesth Analg. 2002;95(5):1154–61., table of contents. https://doi.org/10.1097/00000539-200211000-00005.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Chen Y, Ji C, Gu H, Bai J. Clinical observation of acute hypervolemic hemodilution in scoliosis surgery on children. Zhonghua Yi Xue Za Zhi. 2008;88(41):2901–3.

    CAS  PubMed  Google Scholar 

  73. Singbartl K, Schleinzer W, Singbartl G. Hypervolemic hemodilution: an alternative to acute normovolemic hemodilution? A mathematical analysis. J Surg Res. 1999;86(2):206–12. https://doi.org/10.1006/jsre.1999.5711.

    Article  CAS  PubMed  Google Scholar 

  74. Wood RJ, Stewart CN, Liljeberg K, Sylvanus TS, Lim PK. Transfusion-free cranial vault remodeling: a novel, multifaceted approach. Plast Reconstr Surg. 2020;145(1):167–74. https://doi.org/10.1097/PRS.0000000000006323.

    Article  CAS  PubMed  Google Scholar 

  75. Stone N, Sardana V, Missiuna P. Indications and outcomes of cell saver in adolescent scoliosis correction surgery: a systematic review. Spine (Phila Pa 1976). 2017;42(6):E363–70. https://doi.org/10.1097/BRS.0000000000001780.

    Article  Google Scholar 

  76. Miao Y-L, Ma H-S, Guo W-Z, et al. The efficacy and cost-effectiveness of cell saver use in instrumented posterior correction and fusion surgery for scoliosis in school-aged children and adolescents. PLoS One. 2014;9(4):e92997. https://doi.org/10.1371/journal.pone.0092997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Esper SA, Waters JH. Intra-operative cell salvage: a fresh look at the indications and contraindications. Blood Transfus. 2011;9(2):139–47. https://doi.org/10.2450/2011.0081-10.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Goobie SM, Meier PM, Pereira LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71. https://doi.org/10.1097/ALN.0b013e318210fd8f.

    Article  CAS  PubMed  Google Scholar 

  79. Eustache G, Riffaud L. Reducing blood loss in pediatric craniosynostosis surgery by use of tranexamic acid. Neurochirurgie. 2019;65(5):302–9. https://doi.org/10.1016/j.neuchi.2019.09.020.

    Article  CAS  PubMed  Google Scholar 

  80. Kurnik NM, Pflibsen LR, Bristol RE, Singh DJ. Tranexamic acid reduces blood loss in craniosynostosis surgery. J Craniofac Surg. 2017;28(5):1325–9. https://doi.org/10.1097/SCS.0000000000003731.

    Article  PubMed  Google Scholar 

  81. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology. 2005;102(4):727–32. https://doi.org/10.1097/00000542-200504000-00006.

    Article  CAS  PubMed  Google Scholar 

  82. Karimi S, Lu VM, Nambiar M, Phan K, Ambikaipalan A, Mobbs RJ. Antifibrinolytic agents for paediatric scoliosis surgery: a systematic review and meta-analysis. Eur Spine J. 2019;28(5):1023–34. https://doi.org/10.1007/s00586-019-05911-8.

    Article  PubMed  Google Scholar 

  83. Phi JH, Goobie SM, Hong KH, Dholakia A, Smith ER. Use of tranexamic acid in infants undergoing choroid plexus papilloma surgery: a report of two cases. Pediatr Anesth. 2014;24(7):791–3. https://doi.org/10.1111/pan.12447.

    Article  Google Scholar 

  84. Schouten ES, van de Pol AC, Schouten ANJ, Turner NM, Jansen NJG, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10(2):182–90. https://doi.org/10.1097/PCC.0b013e3181956d61.

    Article  PubMed  Google Scholar 

  85. Collaborators. C-3 trial. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23. https://doi.org/10.1016/S0140-6736(19)32233-0.

    Article  Google Scholar 

  86. Beno S, Ackery AD, Callum J, Rizoli S. Tranexamic acid in pediatric trauma: why not? Crit Care. 2014;18(4):313. https://doi.org/10.1186/cc13965.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Faraoni D, Goobie SM. The efficacy of antifibrinolytic drugs in children undergoing noncardiac surgery: a systematic review of the literature. Anesth Analg. 2014;118(3):628–36. https://doi.org/10.1213/ANE.0000000000000080.

    Article  CAS  PubMed  Google Scholar 

  88. Johnson DJ, Johnson CC, Goobie SM, et al. High-dose versus low-dose tranexamic acid to reduce transfusion requirements in pediatric scoliosis surgery. J Pediatr Orthop. 2017;37(8):e552–7. https://doi.org/10.1097/BPO.0000000000000820.

    Article  PubMed  Google Scholar 

  89. Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg. 2014;77(6):852–8.; discussion 858. https://doi.org/10.1097/TA.0000000000000443.

    Article  CAS  PubMed  Google Scholar 

  90. Thompson ME, Saadeh C, Watkins P, Nagy L, Demke J. Blood loss and transfusion requirements with epsilon-aminocaproic acid use during cranial vault reconstruction surgery. J Clin Anesth. 2017;36:153–7. https://doi.org/10.1016/j.jclinane.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

 None to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R.K., Rath, G.P. (2021). Blood Loss and Transfusion in Children Undergoing Neurosurgery. In: Rath, G.P. (eds) Fundamentals of Pediatric Neuroanesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-16-3376-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3376-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3375-1

  • Online ISBN: 978-981-16-3376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics