Skip to main content

Role of Rhizospheric Bacteria in Disease Suppression During Seedling Formation in Millet

  • Chapter
  • First Online:
Plant, Soil and Microbes in Tropical Ecosystems

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Bacteria present in the rhizospheric area of the plant are called rhizospheric bacteria. Rhizospheric bacteria play crucial role in plant development and growth starting from seed germination and also protect the seedlings from fungal phytopathogens. These rhizobacteria are known to produce growth hormones; siderophore; lytic enzymes such as chitinase, lipase, protease, and β-1, 3-glucanase; organic acids; lipopeptides; volatile compounds; and some antibiotics. Some of the common rhizospheric bacteria are Pseudomonas chlororaphis, Bacillus subtilis, Bacillus licheniformis, Pseudomonas fluorescens, Chromobacterium violaceum, Bacillus cereus, and Bacillus stearothermophilus which have been found to suppress the growth of fungal pathogens including Macrophomina phaseolina, Magnaporthe grisea, and Fusarium oxysporum. Lytic enzymes such as chitinase, protease, and β-1, 3- glucanase produced by the rhizobacteria degrade the chitin, glucan, and proteins of the fungal cell wall, respectively. Secondary metabolites produced by the rhizobacteria inhibit the growth of pathogenic fungi by reducing the spore germination, swelling in fungal mycelia, making pore formation in hyphae, cytoplasmic leakages from fungal cells, and finally lysis of hyphae. Pseudomonas and Bacillus are known to induce the induced systemic resistance (ISR) in plants and make them disease resistant against phytopathogens. Millets are group of very important small grain crop which seedling establishment is affected by many soil pathogens. The present chapter is focused on the role of beneficial rhizospheric bacteria in disease suppression in millet crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyeye EI (2008) The intercorrelation of the amino acid quality between raw, steeped and germinated Guinea corn (Sorghum bicolor) grains. Bull Chem Soc Ethiop 22(1). https://doi.org/10.4314/bcse.v22i1.61320

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wide-range antifungal antagonism of Paenibacillus ehimensis IB-Xb and its dependence on chitinase and β-1, 3-glucanase production. Can J Microbiol 54(7):577–587

    Article  CAS  PubMed  Google Scholar 

  • Ali SS, Vidhale NN (2013) Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci 2(12):303–312

    Google Scholar 

  • Al-Jedabi AA (2009) Biological control of Fusarium root-rot of sorghum. Res J Agric Biol Sci 5(4):465–473

    CAS  Google Scholar 

  • Ambati K, Sucharitha KV (2019) Millets-review on nutritional profiles and health benefits. Int J Recent Sci Res 10(7):33943–33948

    Google Scholar 

  • Bazin MJ, Markham P, Scott EM, Lynch JM (1990) Population dynamics and rhizosphere interactions. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 99–127

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Budi SW, van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15(2):191–199

    Article  Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:1–14

    Google Scholar 

  • Chauhan M, Sonawane SK, Arya SS (2018) Nutritional and nutraceutical properties of millets: a review. Clin J Nutrit Dietet 1(1):1–10

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155(1):1–20

    Article  Google Scholar 

  • Das I (2017) Millet diseases: current status and their management. In: Patil JV (ed) Millets and sorghum: biology and genetic improvement. Wiley, New Jersey, pp 291–322

    Chapter  Google Scholar 

  • Das IK, Indira S, Annapurna A, Seetharama N (2008) Biocontrol of charcoal rot in sorghum by fluorescent pseudomonads associated with the rhizosphere. Crop Protect 27(11):1407–1414

    Article  Google Scholar 

  • Dendy DA (1995) Sorghum and millets: production and importance. In: Denby DAV (ed) Sorghum and millets: chemistry and technology. Am. Assoc. Cereal Chemists, Inc., St. Paul, MN, pp 11–26

    Google Scholar 

  • Dimkpa C (2016) Microbial siderophores: production, detection and application in agriculture and environment. Endocytob Cell Res 27(2):7–16

    Google Scholar 

  • Dini-Andreote F, van Elsas JD (2013) Back to the basics: the need for ecophysiological insights to enhance our understanding of microbial behavior in the rhizosphere. Plant Soil 373(1–2):1–15

    Article  CAS  Google Scholar 

  • Doggett H (1989) Small millets—a selective overview. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture. Oxford & IBH, New Delhi, pp 59–70

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65(6):2429–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143(12):3921–3931

    Article  CAS  PubMed  Google Scholar 

  • El-Mougy NS, Abdel-Kader MM, Alhabeb RS (2011) In vitro antifungal activity of chitinolytic enzymes produced by bio-agents against root rot pathogenic fungi. Arch Phytopathol Plant Protect 44(7):613–622

    Article  CAS  Google Scholar 

  • FAO (1972) Food and nutrition, sorghum and millets in human nutrition, Series, No 27

    Google Scholar 

  • Fleuri LF, Kawaguti HY, Sato HH (2009) Production, purification and application of extracellular chitinase from Cellulosimicrobium cellulans 191. Braz J Microbiol 40(3):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426

    Article  CAS  PubMed  Google Scholar 

  • Giorgio A, De Stradis A, Lo Cantore P, Iacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

    Google Scholar 

  • Gupta P, Ravi I, Sharma V (2013) Induction of β-1, 3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J Plant Interact 8(2):155–161

    Article  CAS  Google Scholar 

  • Han Y, Xu L, Liu L, Yi M, Guo E, Zhang A, Yi H (2017) Illumina sequencing reveals a rhizosphere bacterial community associated with foxtail millet smut disease suppression. Plant Soil 410(1–2):411–421

    Article  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30(10):961

    Article  CAS  PubMed  Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and millets their composition and nutritive value. Academic Press, New York

    Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40(1):97–106

    Article  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2008) Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biol Control 45(1):72–84

    Article  Google Scholar 

  • Jadhav HP, Shaikh SS, Sayyed RZ (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 183–203

    Chapter  Google Scholar 

  • Jogaiah S, Mitani S, Kestur Nagaraj A, Huntrike Shekar S (2007) Activity of cyazofamid against Sclerospora graminicola, a downy mildew disease of pearl millet. Pest Manag Sci 63(7):722–727

    Article  CAS  PubMed  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol Res 151(4):433–439

    Article  CAS  PubMed  Google Scholar 

  • Khatri D, Durgapal A, Joshi PK (2016) Biofertilization enhances productivity and nutrient uptake of foxtail millet plants. J Crop Improv 30(1):32–46

    Article  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Boil 36(2):185–189

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Ko HS, Jin RD, Krishnan HB, Lee SB, Kim KY (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59(6):608–615

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agricult Food Secur 7(1):31

    Article  Google Scholar 

  • Leukel RW, Martin JH (1943) Seed rot and seedling blight of sorghum (No 1488-2016-124410)

    Google Scholar 

  • Little CR, Perumal R (2019) The biology and control of sorghum diseases. In: Ciampitti IA, Vara Prasad PV (eds) Sorghum: a state of the art and future perspectives, vol 58, pp 297–346

    Chapter  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39(1):461–490

    Article  CAS  PubMed  Google Scholar 

  • Mounde LG, Boh MY, Cotter M, Rasche F (2015) Potential of rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J Plant Dis Protect 122(2):100–106

    Article  Google Scholar 

  • Nagaraja A, Das IK (2016) Disease resistance in pearl millet and small millets. In: Biotic stress resistance in millets. Academic Press, pp 69–104

    Chapter  Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2017) Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolates. Org Agric 7(1):63–71

    Article  Google Scholar 

  • Neiendam Nielsen M, Sørensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30(3):217–227

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78(1):84–88

    CAS  Google Scholar 

  • Patil S, Bheemaraddi MC, Shivannavar CT, Gaddad SM (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR J Agricult Veterin Sci 7(9):63–68

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986

    Article  CAS  PubMed  Google Scholar 

  • Radjacommare R, Venkatesan S, Samiyappan R (2010) Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch Phytopathol Plant Protect 43(1):1–17

    Article  CAS  Google Scholar 

  • Raghunathan V (1968) Damping-off of green gram, cauliflower, daincha, ragi and cluster beans. Indian Phytopathol 21:456–457

    Google Scholar 

  • Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22(4):579–588

    Article  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20(1):1–11

    Article  CAS  Google Scholar 

  • Rao M (1989) Inaugural address. In: Seetharam A, Riley K, Harinaryana G (eds) Small millets in global agriculture. Oxford IBH, New Delhi, pp 9–11

    Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566

    Article  PubMed  CAS  Google Scholar 

  • Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83:101–117

    CAS  Google Scholar 

  • Sarita ES, Singh E (2016) Potential of millets: nutrients composition and health benefits. J Sci Innov Res 5(2):46–50

    Article  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50(4):250–256

    CAS  Google Scholar 

  • Saxena A, Raj N, Sarosh BR, Kini R, Shetty HS (2013) Rhizobacteria mediated growth enhancement in pearl millet. Indian J Sci Res 4(2):41–44

    Google Scholar 

  • Sekar J, Prabavathy VR (2014) Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbiol Ecol 89(1):32–46

    Article  CAS  PubMed  Google Scholar 

  • Sekar J, Raju K, Duraisamy P, Ramalingam Vaiyapuri P (2018) Potential of finger millet indigenous rhizobacterium Pseudomonas sp. mssrfd41 in blast disease management—growth promotion and compatibility with the resident rhizomicrobiome. Front Microbiol 9:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N, Zafar M (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:38–43

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Article  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2000) Efficacy of Pseudomonas spp. strains against soil borne and sett borne inoculum of Colletotrichum falcatum causing red rot disease in sugarcane. Sugar Tech 2(3):26–29

    Article  Google Scholar 

  • Webster J, Weber R (2007) Introduction to fungi. Cambridge University Press

    Book  Google Scholar 

  • Wilson JP (2000) Pearl Millet Diseases: a compilation of information on the known pathogens of pearl millet: Pennisetum glaucum (L.) R Br (No 716). US Department of Agriculture, Agricultural Research Service

    Google Scholar 

  • Xiao-Jing X, Li-Qun Z, You-Yong Z, Wen-Hua T (2005) Improving biocontrol effect of Pseudomonas fluorescens P5 on plant diseases by genetic modification with chitinase gene. Chin J Agr Biotechnol 2(1):23–27

    Article  CAS  Google Scholar 

  • Zhang H, Kaushal R, Singh SK, Paré PW (2020) Bacterial volatile-mediated plant abiotic stress tolerance. In: Bacterial volatile compounds as mediators of airborne interactions. Springer, Singapore, pp 187–200

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors thank the Head and Coordinator CAS, FIST of Botany, B.H.U., Varanasi, India for providing necessary facilities. Authors thank the UGC for financial help in the form of project M-14-26. KK and GP acknowledge the CSIR for financial help as SRF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Pal, G., Verma, A., Verma, S.K. (2021). Role of Rhizospheric Bacteria in Disease Suppression During Seedling Formation in Millet. In: Dubey, S.K., Verma, S.K. (eds) Plant, Soil and Microbes in Tropical Ecosystems. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3364-5_12

Download citation

Publish with us

Policies and ethics