Skip to main content

Predicting Classifiers Efficacy in Relation with Data Complexity Metric Using Under-Sampling Techniques

  • Conference paper
  • First Online:
Proceedings of Second Doctoral Symposium on Computational Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1374))

  • 1097 Accesses

Abstract

In imbalanced classification tasks, the training datasets may suffer from other problems like class overlapping, small disjuncts, classes of low density, etc. In such a situation, the learning for the minority class is imprecise. Data complexity metrics help us to identify the relationship between classifier’s learning accuracy and dataset characteristics. This paper presents an experimental study for imbalanced datasets wherein dwCM complexity metric is used to group the datasets based on the complexity level, thereafter the behavior of under-sampling based pre-processing techniques are analyzed for these different groups of datasets. Experiments are conducted on 22 real life datasets with different levels of imbalance, class overlapping and density of the classes. The experimental results show that these groups formed using dwCM metric can better explain the difficulty of imbalanced datasets and help in predicting the response of the classifiers to the under-sampling algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced do- mains. ACM Computing Surveys, 49(2), 1–50.

    Article  Google Scholar 

  2. Gosain A, Saha A, & Singh, D. (2016). Analysis of sampling based classification techniques to overcome class imbalancing. In Proceedings 3rd international conference on computing for sustainable global development (INDIACom) IEEE pp. (7320–7326).

    Google Scholar 

  3. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. The Journal of Artificial Intelligence Research, 16, 321–357.

    Article  Google Scholar 

  4. Estabrooks, A., & Jo, T., Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Journal Computational intelligence, 20(1).

    Google Scholar 

  5. Gracia, S., & Herrera, F. (2009). Evolutionary undersampling for classification with imbal- anced datasets: Proposals and taxonomy. Journal Evolutionary computation, 17, 275–306.

    Article  Google Scholar 

  6. Anand, R., Mehrotra, K., Mohan, C., & Ranka, S. (1993). An improved algorithm for neural net- work classification of imbalanced training sets, IEEE Trans. Neural Networks, 4, 962–969.

    Article  Google Scholar 

  7. Bruzzone, L., & Serpico, S. (1997). Classification of imbalanced remote-sensing data by neural networks. Pattern Recognition Letters, 18, 1323–1328.

    Article  Google Scholar 

  8. Domingos, P. (1999). Metacost: A general method for making classifiers cost sensitive. In Proceedings of fifth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’99 (pp. 155–164). ACM, New York.

    Google Scholar 

  9. Zhou, Z.-H., & Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods ad- dressing the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18, 63–77.

    Article  Google Scholar 

  10. Basu, M., & Ho, T.K. (2006). Data complexity in pattern recognition. In Advance information and knowledge processing. Springer.

    Google Scholar 

  11. Bernado-Manshilla, E., & Ho, T. K. (2005). Domain of competence of XCS classifier system in complexity measurement space. IEEE Transactions on Evolutionary Computation, 9(1), 82–104.

    Article  Google Scholar 

  12. Li, Y., Member, S., & Dong, M. (2005). Classificability-based omnivariate decision trees. IEEE Transactions on Neural Networks, 16(6), 1547–1560.

    Article  Google Scholar 

  13. Baumgartner, R., & Somorjai, R. L. (2006). Data complexity assessment in undersampled classification of high-dimensional biomedical data. Pattern Recognition Letters, 12, 1383–1389.

    Article  Google Scholar 

  14. Yu, H., Ni, J., Xu, S., Qin, B., & Jv, H. (2014). Estimating harmfulness of class imbalance by scatter matrix based class separability measure. Intelligent Data Analysis, 18, 203–216.

    Article  Google Scholar 

  15. Gracia, S., Cano, J. R., Bernado-Mansilla, E., & Herrera, F. (2009). Diagnose of effective evolutionary prototype selection using an overlapping measure. International Journal of Pattern Recognition and Artificial Intelligence, 23(8), 2378–2398.

    Google Scholar 

  16. Anwar, N., Jones, G., & Ganesh, S. (2014). Measurement of data complexity for classification problems with unbalanced data. Statistical Analysis and Data Mining, 7(3), 194–211.

    Article  MathSciNet  Google Scholar 

  17. Fernandez, L.M., Canedo, V.B., & Betanzos, A.A. (2016). Data complexity measures for analyzing the effect of SMOTE over microarrays. In Proceedings European Symposium on artificial neural networks, computational intelligence and machine learning (pp. 289–294).

    Google Scholar 

  18. Fernandez, L. M., Canedo, V. B., & Betanzos, A. A. (2017). Can classification performance be predicted by complexity measures? A study using microarray data. International Journal Knowledge and Information Systems, Springer, 51(3), 1067–1090.

    Article  Google Scholar 

  19. Singh, D., Gosain, A., & Saha, A. (2020). Weighted k-nearest neighbor data complexity metrics for imbalanced datasets. Journal of Statistical Analysis and Data Mining. https://doi.org/10.1002/sam.11463

    Article  MATH  Google Scholar 

  20. Jo, T., & Japkowicz, N. (2004). Class Imbalances versus small disjuncts. ACM SIGKDD Ex- plorations Newsletter, 6(1), 40–49.

    Article  Google Scholar 

  21. Denil, M., Trappenberg, T.P. (2010). Overlap versus imbalance. In Canadian conference on AI (pp. 220–231).

    Google Scholar 

  22. Barella, V. H., Garcia, L.P.F., De Souto, M.P., Lorena, A.C., & De Carvalho, A. (2018). Data complexity measures for imbalanced classification tasks. In Proceedings international joint conference on neural networks (IJCNN) (pp. 1–8). Rio de Janeiro. https://doi.org/10.1109/IJCNN.2018.8489661

  23. Brun, A. L., Britto, A. S., Jr., Oliveira, L. S., Enembreck, F., & Sabourin, R. (2018). A framework for dynamic classifier selection oriented by the classification problem difficulty. Pattern Recognition, 76, 175–190.

    Article  Google Scholar 

  24. Xing, Y., Cai, H., Cai, Y., Hejlesen, O., & Toft, E. (2013) Preliminary evaluation of classification complexity measures on imbalanced data. Proceedings Chinese intelligent automation conference (pp. 189–196).

    Google Scholar 

  25. Yu, H., Ni, J., Xu, S., Qin, B., & Jv, H. (2014). Estimating harmfulness of class imbalance by scatter matrix based class separability measure. Journal Intelligent Data Analysis, 18, 203–216.

    Article  Google Scholar 

  26. Diez-Pastor, J. F., Rodriguez, J. J., Garcia-Osorio, C. I., & Kuncheva, L. I. (2015). Diversity tech- niques improve the performance of the best imbalance learning ensembles. Information Sciences, 325, 98–117.

    Article  MathSciNet  Google Scholar 

  27. Tomek, I. (1976). Two modifications of CNN. IEEE transactions on systems man and communication SMC-6 (pp. 769–772).

    Google Scholar 

  28. Hart, P.E. (1968). The condensed nearest neighbour rule. IEEE transactions on information theory IT-14 (pp. 515–516).

    Google Scholar 

  29. Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced datasets: one sided sampling. In Proceedings of 14th international conference on machine learning (pp. 179–186). Nashville, TN.

    Google Scholar 

  30. Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution. Technical Report A-2001-2, University of Tampere.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D., Saha, A., Gosain, A. (2022). Predicting Classifiers Efficacy in Relation with Data Complexity Metric Using Under-Sampling Techniques. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) Proceedings of Second Doctoral Symposium on Computational Intelligence . Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1_7

Download citation

Publish with us

Policies and ethics