Skip to main content

Future Sustainable Performance of Hemp

  • Chapter
  • First Online:
Hemp and Sustainability

Abstract

As climate change impacts the future growing conditions of hemp and new adaptation methods are implemented, it both influences the water footprint, amounts of pesticides and fertilisers used. Possible climate adaptation practices will be discussed, after which various studies that researched the impact of climate change on water footprint, amounts of pesticides and fertilisers, and the number of hazardous chemicals will be observed to get a grip on the future sustainable performance of hemp in a changing climate. Positive and negative climate change impacts and the required adaption methods for photosynthesis, temperature, water availability, and soil are discussed. Furthermore, the social and environmental sustainability of these adaptation methods is examined. As a result of negative climate change impacts, farmers might increase their use of pesticides, fertilisers, and fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abass E (2005) Life cycle assessment of novel hemp fibre—a review of the green decortication process. Imperial College London, Department of Environmental Science and Technology, London

    Google Scholar 

  2. Abot A et al (2013) Effects of cultural conditions on the hemp (Cannabis sativa) phloem fibres: biological development and mechanical properties. J Compos Mater 8(47):1067–1077. https://doi.org/10.1177/0021998313477669

    Article  CAS  Google Scholar 

  3. Agovino M et al (2019) Agriculture, climate change and sustainability: the case of EU-28. Ecol Ind 105:525–543. https://doi.org/10.1016/j.ecolind.2018.04.064

    Article  Google Scholar 

  4. Aguilar J et al (2015) Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10(8):e0136580. https://doi.org/10.1371/journal.pone.0136580

  5. Ali MH, Hoque MR, Hassan AA, Khair A (2007) Effects of deficit irrigation on yield, water productivity, and economic returns of wheat. Agric Water Manag 92(3):151–161. https://doi.org/10.1016/j.agwat.2007.05.010

    Article  Google Scholar 

  6. Amaducci S, Zatta A, Pelatti F, Venturi G (2008) Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Res 107(2):161–169. https://doi.org/10.1016/j.fcr.2008.02.002

  7. Anderson R, Bayer PE, Edwards D (2020) Climate change and the need for agricultural adaptation. Curr Opin Plant Biol 56:197–202. https://doi.org/10.1016/j.pbi.2019.12.006

    Article  Google Scholar 

  8. Andersson E, Borgström S, McPhearson T (2016) Double insurance in dealing with extremes: ecological and social factors for making nature-based solutions to last. In: Kabisch N, Korn H, Stadler J, Bonn A (eds) Nature-based solutions to climate chagne adaptation in urban areas. Springer Nature, Cham, pp 51–64

    Google Scholar 

  9. Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain 2:95–96. https://doi.org/10.1007/s42398-019-00078-w

    Article  Google Scholar 

  10. Barrows G, Sexton S, Zilberman D (2014) Agricultural biotechnology: the promise and prospects of genetically modified crops. J Econ Perspect 28(1):99–120. https://doi.org/10.1257/jep.28.1.99

    Article  Google Scholar 

  11. BCMAF (1999) Industrial hemp (Cannabis sativa L.) factsheet. British Colombia Ministry of Agriculture and Food, Kamploops. Available at: https://www.votehemp.com/wp-content/uploads/2018/09/hempinfo.pdf. Accessed 10 Dec 2020

  12. Boxall AB et al (2009) Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect 117(4):508–514. https://doi.org/10.1289/ehp.0800084

    Article  CAS  Google Scholar 

  13. Brouwer C, Prins K, Kay M, Heilbloem M (1988) Irrigation water management: irrigation methods. Food and Agriculture Organization (FAO), Rome. Available at: http://www.fao.org/3/s8684e/s8684e00.htm#Contents. Accessed 29 Jan 2021

  14. Canadian Hemp Trade Alliance (2020) Impacts of severe weather events on hemp production. Available at: http://www.hemptrade.ca/eguide/production/impacts-of-severe-weather-events-on-hemp-production. Accessed 4 Dec 2020

  15. Chandra S, Lata H, Khan IA, Elsohly MA (2008) Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol Mol Biol Plants 14(4):299–306. https://doi.org/10.1007/s12298-008-0027-x

  16. Chemikosova SB, Pavlencheva NV, Gur’yanov OP, Gorshkova TA (2006) The effect of soil drought on the phloem fiber development in long-fiber flax. Russ J Plant Physiol 53(5):656–662. https://doi.org/10.1134/S1021443706050098

  17. Clark A (2008) Managing cover crops profitably, 2nd edn. Sustainable Agriculture Network, Beltsville

    Google Scholar 

  18. Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60(9):2529–2539. https://doi.org/10.1093/jxb/erp196

    Article  CAS  Google Scholar 

  19. Cuevas J et al (2019) A review of soil-improving cropping systems for soil salinization. Agronomy 9(295):1–22. https://doi.org/10.3390/agronomy9060295

    Article  CAS  Google Scholar 

  20. Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38(1–3):127–145. https://doi.org/10.1016/0168-1923(86)90054-7

    Article  Google Scholar 

  21. de Azevedo DMP, Landivar J, Vieira RM, Moseley D (1999) The effect of cover crop and crop rotation on soil water storage and on sorghum yield. Pesq Agrop Brasileira 34(3):391–398. https://doi.org/10.1590/s0100-204x1999000300010

    Article  Google Scholar 

  22. de Figueirêdo GS et al (2010) Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Braz Arch Biol Technol 53(1):1–9. https://doi.org/10.1590/S1516-89132010000100001

  23. de Klein JJM, van der Werf AK (2014) Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol Eng 66:36–42. https://doi.org/10.1016/j.ecoleng.2013.04.060

    Article  Google Scholar 

  24. Dewey LH (1914) The yearbook of the United States department of agriculture 1913. U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  25. Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. https://doi.org/10.1146/annurev.arplant.48.1.609

    Article  CAS  Google Scholar 

  26. Erbas BC, Solakoglu EG (2017) In the presence of climate change, the use of fertilizers and the effect of income on agricultural emissions. Sustainability 9:1989. https://doi.org/10.3390/su9111989

    Article  Google Scholar 

  27. FAO (1989) The state of food and agriculture. Food and Agricultural organization (FAO), Rome. Available at: http://www.fao.org/3/t0162e/t0162e.pdf. Accessed 1 Mar 2021

  28. FAO (2013) Climate-smart agriculture sourcebook. Food and Agriculture Organization (FAO), Rome. Available at: http://www.fao.org/3/i3325e/i3325e.pdf. Accessed 3 Feb 2021

  29. Gallego-Schmid A, Zepon Tarpani RR (2019) Life cycle assessment of wastewater treatment in developing countries: a review. Water Res 153:63–79. https://doi.org/10.1016/j.watres.2019.01.010

    Article  CAS  Google Scholar 

  30. González-García S, Hospido A, Feijoo G, Moreira MT (2010) Life cycle assessment of raw materials for non-wood pulp mills: hemp and flax. Resour Conserv Recycl 54(11):923–930. https://doi.org/10.1016/j.resconrec.2010.01.011

    Article  Google Scholar 

  31. Haase D (2016) Urban wetlands and riparian forests as nature-based solution for climate change adaptation in cities and their surroundings. In: Kabisch N, Korn H, Stadler J, Bonn A (eds) Nature‐based solutions to climate change adaptation in urban areas. Springer Nature, Cham, pp 111–122

    Google Scholar 

  32. Hall J, Bhattarai SP, Midmore DJ (2012) Review of flowering control in industrial hemp. J Nat Fibers 9(1):23–36. https://doi.org/10.1080/15440478.2012.651848

    Article  CAS  Google Scholar 

  33. Harper JK et al (2018) Industrial hemp production. The Pennsylvania State University, Pennsylvania. Available at: https://extension.psu.edu/industrial-hemp-production. Accessed 6 Dec 2020

  34. Huaran H et al (2019) Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Ind Crops Prod 129:624–630. https://doi.org/10.1016/j.indcrop.2018.12.028

    Article  CAS  Google Scholar 

  35. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  36. Jan S et al (2020) Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech 10(466). https://doi.org/10.1007/s13205-020-02454-4

  37. Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4(2):51–73. https://doi.org/10.17311/sciintl.2016.51.73

    Article  CAS  Google Scholar 

  38. Khan N, Bano AMD, Babar A (2020) Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE 15(4):e0231426. https://doi.org/10.1371/journal.pone.0231426

  39. Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75(5):779–788. https://doi.org/10.2134/agronj1983.00021962007500050014x

    Article  Google Scholar 

  40. Kirschbaum MUF (2004) Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol 6:242–253. https://doi.org/10.1055/s-2004-820883

    Article  CAS  Google Scholar 

  41. KNMI and WMO (2020) KNMI climate change atlas. Available at: https://climexp.knmi.nl/plot_atlas_form.py. Accessed 24 Jan 2021

  42. Lackner M (2015) Bioplastics—biobased plastics as renewable and/or biodegradable alternatives to petroplastics. In: Othmer K (ed) Encyclopedia of chemical technology. Wiley, pp 1–41

    Google Scholar 

  43. Lalge A et al (2017) Effects of wastewater on seed germination and phytotoxicity of hemp cultivars (Cannabis sativa L.). In: MendelNet 2017—proceedings of 24th international PhD students conference, vol 24, pp 652–657. Available at: https://mendelnet.cz/pdfs/mnt/2017/01/125.pdf. Accessed 10 Feb 2021

  44. Legros S, Picault S, Cerruti N (2013) Factors affecting the yield of industrial hemp—experimental results from France. In: Bouloc P, Allegret S, Arnaud L (eds) Hemp: industrial production and uses. CAB International, Wallingford, pp 72–97

    Chapter  Google Scholar 

  45. Letey J et al (2011) Evaluation of soil salinity leaching requirement guidelines. Agric Water Manag 98(4):502–506. https://doi.org/10.1016/j.agwat.2010.08.009

    Article  Google Scholar 

  46. Malek K, Adam JC, Stöckle CO, Peters RT (2018) Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. J Hydrol 561:444–460. https://doi.org/10.1016/j.jhydrol.2017.11.046

    Article  Google Scholar 

  47. Mateo-Sagasta J, Burke J (2011) Agriculture and water quality interactions: a global overview. SOLAW background thematic report-TR08. Food and Agriculture Organization (FAO), Rome. Available at: http://www.fao.org/3/a-bl092e.pdf. Accessed 25 Jan 2021

  48. Mbow C et al (2019) Food security. In: Shukla PR et al (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem. IPCC, Geneva, pp 437–550

    Google Scholar 

  49. McCaskill MR et al (2016) How hail netting reduces apple fruit surface temperature: a microclimate and modelling study. Agric For Meteorol 226–227:148–160. https://doi.org/10.1016/j.agrformet.2016.05.017

    Article  Google Scholar 

  50. McDonald RI, Girvetz EH (2013). Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS ONE 8(6):e65589. https://doi.org/10.1371/journal.pone.0065589

  51. Meijer WJM, van der Werf HMG, Mathijssen EWJM, van den Brink PWM (1995) Constraints to dry matter production in fibre hemp (Cannabis sativa L.). Eur J Agron 4(1):109–117. https://doi.org/10.1016/S1161-0301(14)80022-1

  52. Mekonnen MM, Hoekstra AY (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600. https://doi.org/10.5194/hess-15-1577-2011

    Article  Google Scholar 

  53. Mercado LM et al (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018. https://doi.org/10.1038/nature07949

    Article  CAS  Google Scholar 

  54. Montford S, Small E (1999) A comparison of the biodiversity friendliness of crops with special reference to hemp (Cannabis sativa L.). J Int Hemp Assoc 6(2):53–63. Available at: http://www.internationalhempassociation.org/jiha/jiha6206.html. Accessed 31 Oct 2020

  55. Mukherjee A, Knoch S, Tavares J (2019) Use of bio-based polymers in agricultural exclusion nets: a perspective. Biosyst Eng 180:121–145. https://doi.org/10.1016/j.biosystemseng.2019.01.017

    Article  Google Scholar 

  56. Mupambi G et al (2018) Protective netting improves leaf-level photosynthetic light use efficiency in ‘honeycrisp’ apple under heat stress. HortScience 53(10):1416–1422. https://doi.org/10.21273/HORTSCI13096-18

    Article  Google Scholar 

  57. OECD (2012) Farmer behaviour, agricultural management and climate change. OECD, Paris. https://doi.org/10.1787/9789264167650-en

    Book  Google Scholar 

  58. OECD (2016) Agriculture and climate change: towards sustainable, productive and climate-friendly agricultural systems. OECD, Paris. Availabe at: https://www-oecd-org.proxy.library.uu.nl/agriculture/ministerial/background/notes/4_background_note.pdf. Accessed 2 Mar 2021

  59. Okur B, Örçen N (2020) Soil salinization and climate change. In: Prasad MNV, Pietrzykowski M (eds) Climate change and soil interactions. Elsevier, Amsterdam, pp 331–350. https://doi.org/10.1016/b978-0-12-818032-7.00012-6

  60. Pahkala K, Pahkala E, Syrjälä H (2008) Northern limits to fiber hemp production in Europe. J Ind Hemp 13(2):104–116. https://doi.org/10.1080/15377880802391084

    Article  Google Scholar 

  61. Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol 2011:1–13. https://doi.org/10.5402/2011/369573

    Article  Google Scholar 

  62. Qadir M et al (2010) The challenges of wastewater irrigation in developing countries. Agric Water Manag 97(4):561–568. https://doi.org/10.1016/j.agwat.2008.11.004

    Article  Google Scholar 

  63. Sahara Forest Project (2019) Enabling restorative growth. Available at: https://www.saharaforestproject.com/wp-content/uploads/2019/12/Folder_liggende-A5_2019_v2_TE.pdf. Accessed 2 Feb 2021

  64. Sarrantonio M, Gallandt E (2003) The role of cover crops in North American cropping systems. J Crop Prod 8(1–2):53–74. https://doi.org/10.1300/J144v08n01_04

    Article  Google Scholar 

  65. Scanlon BR et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109(24):9320–9325. https://doi.org/10.1073/pnas.1200311109

    Article  Google Scholar 

  66. Schluttenhofer C, Yuan L (2017) Challenges towards revitalizing hemp: a multifaceted crop. Trends Plant Sci 22(11):917–929. https://doi.org/10.1016/j.tplants.2017.08.004

    Article  CAS  Google Scholar 

  67. Shahsavari A, Akbari M (2018) Potential of solar energy in developing countries for reducing energy-related emissions. Renew Sustain Energy Rev 90:275–291. https://doi.org/10.1016/j.rser.2018.03.065

    Article  CAS  Google Scholar 

  68. Sharma L et al (2020) Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. J Exp Bot 71(2):569–594. https://doi.org/10.1093/jxb/erz333

    Article  CAS  Google Scholar 

  69. Sikora V, Berenji J, Latković D (2011) Influence of agroclimatic conditions on content of main cannabinoids in industrial hemp (Cannabis sativa L.). Genetika 43(3):449–456. https://doi.org/10.2298/GENSR1103449S

  70. Siwar C, Alam MM, Murad MW, Al-Amin AQ (2009) A review of the linkages between climate change, agricultural sustainability and poverty in Malaysia. Int Rev Bus Res Pap 5(6):309–32. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2941285. Accessed 1 Mar 2021

  71. Tan X et al (2021) Research on the status and priority needs of developing countries to address climate change. J Cleaner Prod 289:125669. https://doi.org/10.1016/j.jclepro.2020.125669

  72. Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–335

    Google Scholar 

  73. Turunen L, van der Werf HMG (2006) Life cycle analysis of hemp textile yarn. Comparison of three fibre processing scenarios and a flax scenario. INFRA, UMR SAS, Rennes

    Google Scholar 

  74. USDA (1914) The yearbook of the United States department of agriculture 1913. U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  75. van der Werf HMG (2004) Life cycle analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 140(1):13–23. https://doi.org/10.1007/s10681-004-4750-2

    Article  Google Scholar 

  76. van der Werf HMG, van Geel WCA, Wijlhuizen M (1995) Agronomic research on hemp (Cannabis sativa L.) in the Netherlands, 1987–1993. J Int Hemp Assoc 2(1):14–17. Available at: http://druglibrary.net/olsen/HEMP/IHA/iha02107.html. Accessed 15 Dec 2020

  77. van Eynde H (2015) Comparative life cycle assessment of hemp and cotton fibres used in Chinese textile manufacturing. KU Leuven, Leuven

    Google Scholar 

  78. Vessel AJ, Black CA (1947) Soil type and soil management factors in hemp production. Res Bull (Iowa Agric Home Econ Exp Stat) 28(352):381–424 (Article 1). Available at: http://lib.dr.iastate.edu/researchbulletin/vol28/iss352/1. Accessed 30 Jan 2021

  79. Vox G et al (2016) Mapping of agriculture plastic waste. Agric Agric Sci Procedia 8:583–591. https://doi.org/10.1016/j.aaspro.2016.02.080

    Article  Google Scholar 

  80. Wallace-Wells D (2019) The uninhabitable earth a story of the future, 1st edn. Penguin Books, London

    Google Scholar 

  81. WCED (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  82. WHO (2006) WHO guidelines for the safe use of wastewater, excreta and greywater. World Health Organization (WHO), Geneva. Available at: https://www.who.int/water_sanitation_health/publications/gsuweg4/en/. Accessed 3 Feb 2021

  83. Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114. https://doi.org/10.1029/2008JD011470

  84. Yadav RK, Kalia P, Singh SD, Varshney R (2012) Selection of genotypes of vegetables for climate change adaptation. In: Pathak H, Aggarwal P, Singh S (eds) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and application. Indian Agricultural Research Institute, New Delhi, pp 200–221

    Google Scholar 

  85. Zampori L, Dotelli G, Vernelli V (2013) Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. Environ Sci Technol 47(13):7413–7420. https://doi.org/10.1021/es401326a

    Article  CAS  Google Scholar 

  86. Zhang D et al (2020) Plastic pollution in croplands threatens long-term food security. Glob Change Biol 26:3356–3367. https://doi.org/10.1111/gcb.15043

    Article  Google Scholar 

  87. Zhang H et al (2018) Estimating evapotranspiration of processing tomato under plastic mulch using the SIMDualKc model. Water 10(8):1088. https://doi.org/10.3390/w10081088

    Article  Google Scholar 

  88. Zubrod JP et al (2019) Fungicides: an overlooked pesticide class? Environ Sci Technol 53:3347–3365. https://doi.org/10.1021/acs.est.8b04392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fieke Dhondt .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhondt, F., Muthu, S.S. (2021). Future Sustainable Performance of Hemp. In: Hemp and Sustainability. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3334-8_6

Download citation

Publish with us

Policies and ethics