Skip to main content

Optimal Conditions for Hemp Fibre Production

  • 388 Accesses

Part of the Sustainable Textiles: Production, Processing, Manufacturing & Chemistry book series (STPPMC)

Abstract

Even though hemp is considered an easy growing plant, hemp fibre yield is affected by the cultivar choice, planting density, harvest time, and the environment. These factors can affect the stem length, diameter, fibre quality, and tetrahydrocannabinol (THC) content. In the optimal climate thresholds, the crop will grow efficiently, but climate change will inevitably affect future crop growth. Understanding how climate change will impact hemp fibre growth is essential to limit the loss of yield. Therefore, we need to fully comprehend hemp’s current preferred conditions and determine influencing factors. This chapter will focus on the current ideal conditions for hemp growth to, later on, determine the effects that environmental conditions currently have. The environment-related vulnerability factors of hemp fibre production are studied and further separated under different themes namely photoperiod and photosynthesis, temperature, precipitation, and soil.

Keywords

  • Hemp
  • Cultivar choice
  • Flowering
  • Monoecious
  • Dioecious
  • Crop management
  • Photoperiod
  • Temperature
  • Precipitation
  • Soil
  • Tetrahydrocannabinol (THC) content

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-3334-8_3
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-3334-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 3.1

References

  1. Abot A et al (2013) Effects of cultural conditions on the hemp (Cannabis sativa) phloem fibres: biological development and mechanical properties. J Compos Mater 8(47):1067–1077. https://doi.org/10.1177/0021998313477669

    CAS  CrossRef  Google Scholar 

  2. Amaducci S et al (2015) Key cultivation techniques for hemp in Europe and China. Ind Crops Prod 68:2–16. https://doi.org/10.1016/j.indcrop.2014.06.041

    CAS  CrossRef  Google Scholar 

  3. Amaducci S, Colauzzi M, Bellocchi G, Venturi G (2008a) Modelling post-emergent hemp phenology (Cannabis sativa L.): theory and evaluation. Eur J Agron 28(2):90–102. https://doi.org/10.1016/j.eja.2007.05.006

  4. Amaducci S, Zatta A, Pelatti F, Venturi G (2008b) Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Res 107(2):161–169. https://doi.org/10.1016/j.fcr.2008.02.002

  5. Are AK et al (2019) Chapter 3—application of plant breeding and genomics for improved sorghum and pearl millet grain nutritional quality. In: Taylor JRN, Duodu KG (eds) Sorghum and Millets, 2nd edn. AACC International Press, Eagan, pp 51–68. https://doi.org/10.1016/B978-0-12-811527-5.00003-4

  6. BCMAF (1999) Industrial hemp (Cannabis sativa L.) factsheet. British Colombia Ministry of Agriculture and Food, Kamploops. Available at: https://www.votehemp.com/wp-content/uploads/2018/09/hempinfo.pdf. Accessed 10 Dec 2020

  7. Bear R et al (2016) Principles of biology. New Prairie Press, Manhattan

    Google Scholar 

  8. Berenji J, Sikora V, Fournier G, Beherec O (2013) Genetics and selection of hemp. In: Bouloc P, Allegret S, Arnaud L (eds) Hemp industrial production and uses. CAB International, Oxfordshire, pp 48–71

    CrossRef  Google Scholar 

  9. Borthwick HA, Scully NJ (1954) Photoperiodic responses of hemp. Botanical Gazette 116:14–29. Available at: http://www.jstor.org/stable/2473219. Accessed 10 Dec 2020

  10. Bosca I, Karus M (1998) The cultivation of hemp: botany, varieties, cultivation and harvesting. HEMPTECH, Sebastopol

    Google Scholar 

  11. Canadian Hemp Trade Alliance (2020) Impacts of severe weather events on hemp production. Available at: http://www.hemptrade.ca/eguide/production/impacts-of-severe-weather-events-on-hemp-production. Accessed 4 Dec 2020

  12. Chemikosova SB, Pavlencheva NV, Gur’yanov OP, Gorshkova TA (2006) The effect of soil drought on the phloem fiber development in long-fiber flax. Russ J Plant Physiol 53(5):656–662. https://doi.org/10.1134/S1021443706050098

  13. Clarke RC (1999) Botany of the genus cannabis. In: Ranalli P (ed) Advances in hemp research. Food Product Press an Imprint of the Haworth Press Inc., New York, pp 1–20

    Google Scholar 

  14. Cosentino SL et al (2013) Evaluation of European developed fibre hemp genotypes (Cannabis sativa L.) in semi-arid mediterranean environment. Ind Crops Prod 50:312–324. https://doi.org/10.1016/j.indcrop.2013.07.059

    CrossRef  Google Scholar 

  15. Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60(9):2529–2539. https://doi.org/10.1093/jxb/erp196

    CAS  CrossRef  Google Scholar 

  16. De Meijer E (1995) Fibre hemp cultivars: a survey of origin, ancestry, availability and brief agronomic characteristics. J Int Hemp Assoc 2(2):66–73. Available at: https://www.votehemp.com/wp-content/uploads/2018/09/jiha_vol2no2.pdf. Accessed 10 Dec 2020

  17. Dewey LH (1914) The yearbook of the United States department of agriculture 1913. U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  18. Duke JA (1982) Ecosystematic data on medical plants. In: Aktal CK, Kapur KM (eds) Utilization of medical plants. United Printing Press, New Dehli, pp 13–23

    Google Scholar 

  19. Ehrensing DT (1998) Feasibility of industrial hemp production in the United states pacific north west. Oregon State University, Oregon. Available at: https://www.votehemp.com/wp-content/uploads/2018/09/sb681.pdf. Accessed 7 Dec 2020

  20. European Commission (2020) Agricultural species - Varieties. [Online] Available at: https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/search/public/index.cfm?event=SearchVariety&ctl_type=A&species_id=240&variety_name=&listed_in=0&show_current=on&show_deleted=. [Accessed 19 December 2020]

  21. Fike J (2016) Industrial hemp: renewed opportunities for an ancient crop. Crit Rev Plant Sci 35(5–6):406–424. https://doi.org/10.1080/07352689.2016.1257842

    CrossRef  Google Scholar 

  22. Goosse H (2015) Climate system dynamics and modelling, 1st edn. Cambridge University Press, New York

    CrossRef  Google Scholar 

  23. Government of Canada (2020) List of approved cultivars for the 2020 growing season: industrial hemp varieties approved for commercial production. Available at: https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/producing-selling-hemp/commercial-licence/list-approved-cultivars-cannabis-sativa.html. Accessed 19 Dec 2020

  24. Hall J, Bhattarai SP, Midmore DJ (2012) Review of flowering control in industrial hemp. J Nat Fibers 9(1):23–36. https://doi.org/10.1080/15440478.2012.651848

    CAS  CrossRef  Google Scholar 

  25. Hall J, Bhattarai SP, Midmore DJ (2014) The effects of photoperiod on phenological development and yields of industrial hemp. J Nat Fibers 11(1):87–106. https://doi.org/10.1080/15440478.2013.846840

    CAS  CrossRef  Google Scholar 

  26. Harper JK et al (2018) Industrial hemp production. The Pennsylvania State University, Pennsylvania. Available at: https://extension.psu.edu/industrial-hemp-production. Accessed 6 Dec 2020

  27. Hillig K (2005) Genetic evidence for speciation in cannabis (Cannabaceae). Genet Resour Crop Evol 52:161–180. https://doi.org/10.1007/s10722-003-4452-y

    CAS  CrossRef  Google Scholar 

  28. Höppner F, Menge-Hartmann U (2007) Yield and quality of fibre and oil of fourteen hemp cultivars in Northern Germany at two harvest dates. Landbauforschung Völkenrode 57(3):219–232. Available at: https://literatur.thuenen.de/digbib_extern/bitv/dk038391.pdf. Accessed 17 Dec 2020

  29. Johnson BL et al (2016) Industrial hemp cultivar evaluations in North Dakota. North Dakota State University, North Dakota

    Google Scholar 

  30. Keller A, Leupin M, Mediavilla V, Wintermantel E (2001) Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres. Ind Crops Prod 13(1):35–48. https://doi.org/10.1016/S0926-6690(00)00051-0

    CAS  CrossRef  Google Scholar 

  31. Kraenzel DG et al (1998) Industrial hemp as an alternative crop in North Dakota. The Insstitute for Natural Resources and Economic Development, North Dakota. Available at: https://www.votehemp.com/wp-content/uploads/2018/09/aer402.pdf. Accessed 18 Dec 2020

  32. Laate EA (2012) Industrial hemp production in Canada. Government of Alberta, Alberta. Available at: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/econ9631/$file/Final%20-%20Industrial%20Hemp%20Production%20in%20Canada%20-%20June%2025%202012.pdf?OpenElement. Accessed 17 Dec 2020

  33. Li X, Du G, Wang S, Meng Y (2015) Influence of gender on the mechanical and physical properties of hemp shiv fiber cell wall in dioecious hemp plant. Bioresources 10(2). https://doi.org/10.15376/biores.10.2.2281-2288

  34. Lisson S, Mendham N (1998) Response of fiber hemp (Cannabis sativa L.) to varying irrigation regimes. J Int Hemp Assoc 1(5):9–15. Available at: http://www.internationalhempassociation.org/jiha/jiha5106.html. Accessed 11 Dec 2020

  35. Mediavilla V, Leupin M, Keller A (2001) Influence of the growth stage of industrial hemp on the yield formation in relation to certain fibre quality traits. Ind Crops Prod 13(1):49–56. https://doi.org/10.1016/s0926-6690(00)00052-2

    CAS  CrossRef  Google Scholar 

  36. Meijer WJM, van der Werf HMG, Mathijssen EWJM, van den Brink PWM (1995) Constraints to dry matter production in fibre hemp (Cannabis sativa L.). Eur J Agron 4(1):109–117. https://doi.org/10.1016/S1161-0301(14)80022-1

  37. Moneith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond 281:277–294. https://doi.org/10.1098/rstb.1977.0140

    CrossRef  Google Scholar 

  38. Pahkala K, Pahkala E, Syrjälä H (2008) Northern limits to fiber hemp production in Europe. J Ind Hemp 13(2):104–116. https://doi.org/10.1080/15377880802391084

    CrossRef  Google Scholar 

  39. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss Eur Geosci Union 4(2):439–473. https://doi.org/10.5194/hess-11-1633-2007

    CrossRef  Google Scholar 

  40. Petit J et al (2020) Genetic variability of morphological, flowering, and biomass quality traits in hemp (Cannabis sativa L.). Front Plant Sci 11(102):1–17. https://doi.org/10.3389/fpls.2020.00102

  41. Ranalli P (2004) Current status and future scenarios of hemp breeding. Euphytica 140:121–131. https://doi.org/10.1007/s10681-004-4760-0

    CrossRef  Google Scholar 

  42. Salentijn EMJ et al (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 68:32–41. https://doi.org/10.1016/j.indcrop.2014.08.011

    CrossRef  Google Scholar 

  43. Salentijn EMJ, Petit J, Trindade LM (2019) The complex interactions between flowering behavior and fiber quality in hemp. Front Plant Sci 10(614). https://doi.org/10.3389/fpls.2019.00614

  44. Sankari HS (2000) Comparison of bast fibre yield and mechanical fibres properties of hemp (Cannabis sativa L.) cultivars. Ind Crops Prod 11(1):73–84. https://doi.org/10.1016/S0926-6690(99)00038-2

  45. Sarsenbaev K, Kozhamzharova L, Baytelieva A (2013) Influence high temperature, drought and long vegetation period on phenology and seed productivity European hemp cultivars in Moinkum Desert. World Appl Sci J 23(5):638–643. https://doi.org/10.5829/idosi.wasj.2013.23.05.13095

    CrossRef  Google Scholar 

  46. Schäfer T, Honermeier B (2006) Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.). Ind Crops Prod 23(1):88–98. https://doi.org/10.1016/j.indcrop.2005.04.003

  47. Sikora V, Berenji J, Latković D (2011) Influence of agroclimatic conditions on content of main cannabinoids in industrial hemp (Cannabis sativa L.). Genetika 43(3):449–456. https://doi.org/10.2298/GENSR1103449S

  48. Small E (2015) Evolution and classification of cannabis sativa (marijuana, hemp) in relation to human utilization. Bot Rev 81:189–294. https://doi.org/10.1007/s12229-015-9157-3

    CrossRef  Google Scholar 

  49. Struik PC et al (2000) Agronomy of fibre hemp (Cannabis satitiva L.) in Europe. Ind Crops Prod 11(2–3):107–118. https://doi.org/10.1016/S0926-6690(99)00048-5

  50. Tang K et al (2016) Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind Crops Prod 87:33–44. https://doi.org/10.1016/j.indcrop.2016.04.026

    CAS  CrossRef  Google Scholar 

  51. Trenberth KE (2011) Changes in precipitation with climate change. CR Apecial 25, 47(1):123–138. https://doi.org/10.3354/cr00953

  52. Van der Werf HMG, Haasken HJ, Wijlhuizen M (1994) The effect of daylength on yield and quality of fibre hemp (Cannabis sativa L.). Eur J Agron 3(2):117–123. https://doi.org/10.1016/s1161-0301(14)80117-2

  53. Van der Werf HMG, van Geel WCA, Wijlhuizen M (1995a) Agronomic research on hemp (Cannabis sativa L.) in the Netherlands, 1987–1993. J Int Hemp Assoc 2(1):14–17. Available at: http://druglibrary.net/olsen/HEMP/IHA/iha02107.html. Accessed 15 Dec 2020

  54. Van der Werf HMG, Wijlhuizen M, De Schutter JAA (1995b) Plant density and self-thinning affect yield and quality of fibre hemp (Cannabis sativa L.). Field Crops Res 40:153–164. https://doi.org/10.1016/0378-4290(94)00103-J

  55. Van der Werf HMG, Mathijssen EWJM, Haverkort AJ (1996) The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Assoc Appl Biol 129:109–123. https://doi.org/10.1111/j.1744-7348.1996.tb05736.x

    CrossRef  Google Scholar 

  56. Westerhuis W (2016) Hemp for textiles: plant size matters. Wageningen University, Wageningen. Available at: https://edepot.wur.nl/378698. Accessed 8 Dec 2020

  57. Wulijarni-Soetjipto N, Subarnas A, Horsten S, Stutterheim N (1999) Cannabis sativa L. In: de Padua L, Bunyapraphatsara N, Lemmens R (eds) Plant resources of South-East Asia: no 12(1) medicinal and poisonous plants 1. Backhuys Publishers, Leiden, pp 167–175

    Google Scholar 

  58. Zatta A, Monti A, Venturi G (2012) Eighty years of studies on industrial hemp in the Po Valley (1930–2010). J Nat Fibres 9(3):180–196. https://doi.org/10.1080/15440478.2012.706439

    CrossRef  Google Scholar 

  59. Zhang Q et al (2018) Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.01876

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fieke Dhondt .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Dhondt, F., Muthu, S.S. (2021). Optimal Conditions for Hemp Fibre Production. In: Hemp and Sustainability. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3334-8_3

Download citation