Skip to main content

MXene: A Non-oxide Next-Generation Energy Storage Materials for Batteries and Supercapacitors

  • Chapter
  • First Online:
Advanced Applications of 2D Nanostructures

Abstract

MXenes, represented by Mn+1XnTx, are an emerging class of two-dimensional (2D) nitrides, carbides and carbonitrides (X) of transition elements (M) containing terminations of free surface-active groups (T). These are derived by selective etching out ‘A’ from their corresponding MAX phases. MXene, like their other 2D material counterparts, has exceptional electrical, electrochemical, mechanical and structural properties which make them a formidable candidate for electrode materials in energy storage systems like rechargeable lithium-ion batteries, supercapacitors and microsupercapacitors. They have excellent metal-ion storage capacity due to large interlayer space, low ion diffusion barrier, metal-like conductivity, high thermal stability and hydrophilic surface. Also, increased electrochemical performance has been observed when MXenes are used in conjuncture with graphene and carbon nanotubes (CNT) or dopants like silver, silicon, etc., as heterostructures or hybrid composites of 2D materials synthesized via innovative mix of processes. Thus, MXenes have been successfully identified and demonstrated as future sustainable energy material for energy storage application in the upcoming battery technology revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, A., Hantanasirisakul, K., Abdala, A., Urbankowski, P., Zhao, M.-Q., Anasori, B., Gogotsy, Y., Aissa, B., & Mahmoud, K. A. (2018). Effect of synthesis on performance of MXene/Iron oxide anode material for Lithium-Ion batteries. Langmuir.

    Google Scholar 

  • Chang, T.-H., Zhang, T., Yang, H., Li, K., Tian, Y., Lee, J. Y., & Chen, P.-Y. (2018). Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano.

    Google Scholar 

  • Dall’Agnese, Y., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2015). Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. The Journal of Physical Chemistry Letters, 6(12), 2305–2309.

    Google Scholar 

  • Demiroglu, I., Peeters, F. M., Gulseren, O., Cakir, D., & Sevik, C. (2019). Alkali metal intercalation in MXene/graphene heterostructures, a new platform for ion battery applications. The Journal of Physical Chemistry Letters.

    Google Scholar 

  • Du, C., Wu, J., Yang, P., Li, S., Xu, J., & Song, K. (2019). Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulphur batteries. Electrochimica Acta, 295, 1067–1074.

    Article  Google Scholar 

  • Er, D., Li, J., Naguib, M., Gogotsi, Y., & Shenoy, V. B. (2014). Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Applied Materials & Interfaces, 6(14), 11173–11179.

    Article  Google Scholar 

  • Fan, Z., Wang, Y., Xie, Z., Xu, X., Yuan, Y., Cheng, Z., & Liu, Y. (2018). A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 10(20), 9642–9652.

    Article  Google Scholar 

  • Gao, L., Li, C., Huang, W., Mei, S., Lin, H., Ou, Q., Zhang, Y., Guo, J., Zhang, F., Xu, S., & Zhang, H. (2020). MXene/polymer membranes: Synthesis, properties, and emerging applications. Chemistry of Materials 32(5), 1703–1747.

    Google Scholar 

  • Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78–81.

    Article  ADS  Google Scholar 

  • Halim, J., Kota, S., Lukatskaya, M. R., Naguib, M., Zhao, M.-Q., Moon, E. J., Pitock, J., Nanda, J., May, S. J., Gogotsi, Y., & Barsoum, M. W. (2016). Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26(18), 3118–3127.

    Article  Google Scholar 

  • Hu, H., Bai, Z., Niu, B., Wu, M., & Hua, T. (2018). Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. Journal of Materials Chemistry A, 6(30), 14876–14884.

    Article  Google Scholar 

  • Iqbal, A., Kwon, J., Kim, M. K., & Koo, C. M. (2021). MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Materials Today Advances, 9, 100–124.

    Article  Google Scholar 

  • Jiang, H., Wang, Z., Yang, Q., Hanif, M., Wang, Z., Dong, L., & Dong, M. (2018). A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta.

    Google Scholar 

  • Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Material Chemistry C, 5, 2488–2503.

    Article  Google Scholar 

  • Kong, F., He, X., Liu, Q., Qi, X., Sun, D., Zheng, Y., Wang, R., & Bai, Y. (2018). Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite. Electrochemistry Communications, 97, 16–21.

    Article  Google Scholar 

  • Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications, 2(04), 133–137.

    Article  Google Scholar 

  • Li, L., Zhang, N., Zhang, M., Wu, L., Zhang, X., & Zhang, Z. (2018). Ag-Nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustainable Chemistry & Engineering, 6(6), 7442–7450.

    Article  Google Scholar 

  • Liu, M. C., Li, J., Yang, Q.-Q., Xu, Y., Kong, L.-B., Bai, R.-J., Liu, W., Niu, W., & Chueh, Y.-L. (2019). Hierarchically Interconnected Ni3S2 nanofibers as binder-free electrodes for high-performance sodium-ion energy storage devices. ACS Applied Nano Materials.

    Google Scholar 

  • Lu, M., Li, H., Han, W., Chen, J., Shi, W., Wang, J., Meng, X.-M., Qi, J., Li, H., Zhang, W., & Zheng, W. (2018). 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. Journal of Energy Chemistry.

    Google Scholar 

  • Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., & Gogotsi, Y. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.

    Article  ADS  Google Scholar 

  • Luo, K., Zha, X.-H., Zhou, Y., Guo, Z., Lin, C.-T., Huang, Q., Zhou, S., Zhang, R., & Du, S. (2018). First-principles study on the electrical and thermal properties of the semiconducting Sc3(CN)F2 MXene. RSC Advances, 8(40), 22452–22459.

    Article  ADS  Google Scholar 

  • Lv, G., Wang, J., Shi, Z., & Fan, L. (2018). Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Materials Letters, 219, 45–50.

    Article  Google Scholar 

  • Mao, J., Zhou, T., Zheng, Y., Gao, H., Liu, H., & Guo, Z. (2018). Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 6(8), 3284–3303.

    Article  Google Scholar 

  • Mashtalir, O., Lukatskaya, M. R., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Advanced Materials, 27(23), 3501–3506.

    Article  Google Scholar 

  • Meng, Q., Ma, J., Zhang, Y., Li, Z., Hu, A., Kai, J.-J., & Fan, J. (2018a). Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries. Journal of Materials Chemistry A, 6(28), 13652–13660.

    Article  Google Scholar 

  • Meng, Q., Ma, J., Zhang, Y., Li, Z., Zhi, C., Hu, A., & Fan, J. (2018b). The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 10(7), 3385–3392.

    Article  Google Scholar 

  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.

    Article  Google Scholar 

  • Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2013). 25th Anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.

    Article  Google Scholar 

  • Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., Kumbur, E. C., Alshareef, H. N., Ger, M.-D., & Gogotsi, Y. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9(9), 2847–2854.

    Article  Google Scholar 

  • Shan, Q., Mu, X., Alhabeb, M., Shuck, C. E., Pang, D., Zhao, X., Chu, X.-F., Wei, Y., Du, F., Chen, G., Gogotsi, Y., Gao, Y., & Dall’Agnese, Y. (2018). Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications.

    Google Scholar 

  • Sun, S., Liao, C., Hafez, A. M., Zhu, H., & Wu, S. (2018). Two-dimensional MXenes for energy storage. Chemical Engineering Journal, 338, 27–45.

    Article  Google Scholar 

  • Tang, H., Hu, Q., Zheng, M., Chi, Y., Qin, X., Pang, H., & Xu, Q. (2018). Mxene–2D layered electrode materials for energy storage. Progress in Natural Science: Materials International, 28(2), 133–147.

    Article  Google Scholar 

  • Tao, M., Zhang, Y., Zhan, R., Guo, B., Xu, Q., & Xu, M. (2018). A chemically bonded CoNiO2 nanoparticles/MXene composite as anode for sodium-ion batteries. Materials Letters, 230, 173–176.

    Article  Google Scholar 

  • Wang, C.-H., Kurra, N., Alhabeb, M., Chang, J.-K., Alshareef, H. N., & Gogotsi, Y. (2018a). Titanium carbide (MXene) as a current collector for Lithium-Ion batteries. ACS Omega, 3(10), 12489–12494.

    Article  Google Scholar 

  • Wang, J., Dong, S., Li, H., Chen, Z., Jiang, S., Wu, L., & Zhang, X. (2018b). Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. Journal of Electroanalytical Chemistry, 810, 27–33.

    Article  Google Scholar 

  • Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., & Wang, L. (2017). Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368–376.

    Article  Google Scholar 

  • Xie, X., Kretschmer, K., Anasori, B., Sun, B., Wang, G., & Gogotsi, Y. (2018). Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life. ACS Applied Nano Materials, 1(2), 505–511.

    Article  Google Scholar 

  • Xiong, D., Li, X., Bai, Z., & Lu, S. (2018). Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small (weinheim an Der Bergstrasse, Germany), 14(17), 1703419.

    Article  Google Scholar 

  • Xu, M., Bai, N., Li, H.-X., Hu, C., Qi, J., & Yan, X.-B. (2018). Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chinese Chemical Letters, 29(8), 1313–1316.

    Article  Google Scholar 

  • Yang, L., Zheng, W., Zhang, P., Chen, J., Tian, W. B., Zhang, Y. M., & Sun, Z. M. (2018). MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry.

    Google Scholar 

  • Yang, W., Lu, H., Cao, Y., Xu, B., Deng, Y., & Cai, W. (2019). A Flexible Free-standing MoS2/Carbon Nanofibers Composite Cathode for Rechargeable Aluminum-Ion Batteries. ACS Sustainable Chemistry & Engineering.

    Google Scholar 

  • Yue, Y., Liu, N., Ma, Y., Wang, S., Liu, W., Luo, C., Zhang, H., Cheng, F., Rao, J., Hu, X., Su, J., & Gao, Y. (2018). Highly self-healable 3d microsupercapacitor with MXene–graphene composite aerogel. ACS Nano, 12(5), 4224–4232.

    Article  Google Scholar 

  • Yu, L., Hu, L., Anasori, B., Liu, Y.-T., Zhu, Q., Zhang, P., Gogotsi, Y., & Xu, B. (2018a). MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Letters, 3(7), 1597–1603.

    Article  Google Scholar 

  • Yu, P., Cao, G., Yi, S., Zhang, X., Li, C., Sun, X., Wang, K., & Ma, Y. (2018b). Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale, 10(13), 5906–5913.

    Article  Google Scholar 

  • Zhang, X., Liu, Y., Dong, S., Yang, J., & Liu, X. (2018). Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochimica Acta, 294, 233–239.

    Article  Google Scholar 

  • Zhao, M.-Q., Ren, C. E., Alhabeb, M., Anasori, B., Barsoum, M. W., Gogotsi, Y. (2019). Magnesium-ion storage capability of MXenes. ACS Applied Energy Materials.

    Google Scholar 

  • Zhao, M.-Q., Torelli, M., Ren, C. E., Ghidiu, M., Ling, Z., Anasori, B., Barsoum, M.-W., & Gogotsi, Y. (2016). 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 30, 603–613.

    Article  Google Scholar 

  • Zheng, W., Zhang, P., Chen, J., Tian, W. B., Zhang, Y. M., & Sun, Z. M. (2018). In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. Journal of Materials Chemistry A, 6(8), 3543–3551.

    Article  Google Scholar 

  • Zhu, J., Ha, E., Zhao, G., Zhou, Y., Huang, D., Yue, G., Hu, L., Sun, N., Wang, Y., Lee, L. Y. S., Xu, C., Wong, K., Astruc, D., & Zhao, P. (2017). Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 352, 306–327.

    Article  Google Scholar 

  • Zhu, J., Wang, M., Lyu, M., Jiao, Y., Du, A., Luo, B., Gentle, I., R., & Wang, L. (2018a). Two-dimensional titanium carbonitride MXene for high-performance sodium-ion batteries. ACS Applied Nano Materials.

    Google Scholar 

  • Zhu, K., Jin, Y., Du, F., Gao, S., Gao, Z., Meng, X., Chen, G., Wei, Y., & Gao, Y. (2018b). Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. Journal of Energy Chemistry.

    Google Scholar 

  • Zou, R., Quan, H., Pan, M., Zhou, S., Chen, D., & Luo, X. (2018). Self-assembled Mxene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochimica Acta.

    Google Scholar 

Download references

Acknowledgements

This book chapter was financially supported by Empowerment and Equity Opportunities for Excellence in Science (EEQ/2018/000873), Science & Engineering Research Board (SERB), Department of Science and Technology, Government of India and Ministry of Human Resource and Development (MHRD), Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, M., Behura, S.K., Beidaghi, M., Verma, K., Singh, S. (2021). MXene: A Non-oxide Next-Generation Energy Storage Materials for Batteries and Supercapacitors. In: Singh, S., Verma, K., Prakash, C. (eds) Advanced Applications of 2D Nanostructures. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3322-5_6

Download citation

Publish with us

Policies and ethics