Skip to main content

Fungi a Potential Source of Bioactive Metabolites an Indian Prospective

  • Chapter
  • First Online:
Progress in Mycology

Abstract

Fungi are multifaceted microbes and are one of the largest groups among living organisms and have established themselves as an important source of the diverse bioactive metabolites. These metabolites are of different attributes such as antibacterial, antifungal, immunosuppressant, cholesterol-lowering, anticancer, anti-inflammatory, antidiabetic, etc. This group of microbes has been explored for producing bioactive metabolites for their pharmaceutical applications after the discovery of penicillin. Interestingly, some fungal metabolites or their derivatives have been brought to the market in the form of drugs under different categories such as penicillin G, cephalosporin C, fusidic acid, retapamulin, valnemulin, tiamulin (antibacterial), griseofulvin, micafungin, anidulafungin, caspofungin (antifungal), lovastatin (anti-hypercholesterolemic), and cyclosporine A (immunosuppressant). In earlier work in India, the bioactive metabolites were isolated from soil fungi by Hindustan Antibiotics Ltd. at Pune and Rishikesh and Hoechst Pharmaceuticals, Mumbai. Later, the emphasis was shifted to marine and endophytic fungi as interest shown by prime institutes like Hoechst Pharmaceuticals, Mumbai; Piramal Enterprises Ltd., Mumbai; Indian Institute of Integrated Medicine, Jammu; Banaras Hindu University, Varanasi; University of Jammu, Jammu; and University of Agricultural Sciences, Bangalore, to name few. This chapter highlights the bioactive metabolites from fungi isolated from various sources (soil, plants, marine, etc.) with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawala S, Deshmukh SK, Reddy MS, Prasad R, Goel M (2020) Endolichenic fungi: a hidden source of bioactive metabolites. South Afr J Bot. https://doi.org/10.1016/j.sajb.2019.12.008

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77(7):3957–3961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Wani ZA, Nalli Y, Ali A, Riyaz-Ul-Hassan S (2016a) Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microb Ecol 72(4):802–812

    CAS  PubMed  Google Scholar 

  • Arora D, Sharma N, Singamaneni V, Sharma V, Kushwaha M, Abrol V, Guru S, Sharma S, Gupta AP, Bhushan S et al (2016b) Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23(12):1312–1320

    CAS  PubMed  Google Scholar 

  • Arora D, Chashoo G, Singamaneni V, Sharma N, Gupta P, Jaglan S (2018) Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. J Appl Microbiol 124(3):730–739

    CAS  PubMed  Google Scholar 

  • Bhatia DR, Dhar P, Mutalik V, Deshmukh SK, Verekar SA, Desai DC, Kshirsagar R, Agarwal V, Thiagarajan P (2016) Isolation, structure elucidation and novel anticancer activity of ophiobolin A, isolated from fungus Bipolaris setariae. Nat Prod Res 30(12):1455–1458

    CAS  PubMed  Google Scholar 

  • Bhuyan BK, Ganguli BN, Ghosh D (1961) Comparative study of penicillin production with vegetative and spore inoculum of Penicillium chrysogenum. Appl Microbiol 9(1):85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bills GF, Platas G, Fillola A, Jiménez MR, Collado J, Vicente F, Martín J, González A, Bur-Zimmermann J, Tormo JR, Peláez F (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 104:1644–1658

    CAS  PubMed  Google Scholar 

  • Bills GF, Yue Q, Chen L, Li Y, An Z, Frisvad JC (2016) Aspergillus mulundensis sp. nov., a new species for the fungus producing the antifungal echinocandin lipopeptides, mulundocandins. J Antibiot Res 69(3):141–148

    CAS  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    CAS  PubMed  Google Scholar 

  • Brockmann H, Haschad MN, Maier K, Pohl F (1939) Hypericin, the photodynamically active pigment from Hypericum perforatum. Nebr Med J 32:550–555

    Google Scholar 

  • Brotzu G (1948) Ricerche su di un nuovo antibiotico. Lavori dell’Istituto d’Igiene di Cagliari 4–18

    Google Scholar 

  • Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22(1):323–329

    CAS  Google Scholar 

  • Butterworth JH (1968) Isolation of a substance that suppresses feeding in locusts. Chem Commun:23–24

    Google Scholar 

  • Chakravarthi BV, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33(2):259–267

    CAS  PubMed  Google Scholar 

  • Chakravarthi BV, Sujay R, Kuriakose GC, Karande AA, Jayabaskaran C (2013) Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursor baccatin III purified from endophytic Fusarium solani. Cancer Cell Int 13:105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LX, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28(4):705–740

    CAS  PubMed  Google Scholar 

  • Chiang YM, Chang SL, Oakley BR, Wang CC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15(1):137–143

    CAS  PubMed  Google Scholar 

  • Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK (2014a) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35

    CAS  PubMed  Google Scholar 

  • Chithra S, Jasim B, Jyothis M, Sachidanandan P, Radhakrishnan EK (2014b) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540

    CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67(2):232–244

    CAS  PubMed  Google Scholar 

  • Das A, Rahman MI, Ferdous AS, Al-Amin R, Mahbubur M, Nahar N (2017) An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS One 12(6):e0178612/1–e0178612/17

    CAS  Google Scholar 

  • de la Cruz M, Martín J, González-Menéndez V, Pérez-Victoria I, Moreno C, Tormo JR, El Aouad N, Guarro J, Vicente F, Reyes F, Bills GF (2012) Chemical and physical modulation of antibiotic activity in Emericella species. Chem Biodivers 9(6):1095–1113

    PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P, Edrada-Ebel R, Wray V, Müller WEG, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MHG, Wen HL, Mosaddak M, Hakiki A, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72(4):626–631

    CAS  PubMed  Google Scholar 

  • Delaey EM, Obermueller R, Zupko I, De Vos D, Falk H, de Witte PA (2001) In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines. Photochem Photobiol 74:164–171

    CAS  PubMed  Google Scholar 

  • Derf A, Verekar SA, Jain S, Deshmukh SK, Bharate SK, Chaudhuri B (2019) Radicicol rescues yeast cell death triggered by expression of human α-Synuclein and its A53T mutant, but not by human βA4 peptide and proapoptotic protein bax. Bioorg Chem 85:152–158

    CAS  PubMed  Google Scholar 

  • Deshidi R, Devari S, Kushwaha M, Gupta AP, Sharma R, Chib R, Khan IA, Jaglan S, Shah BA (2017) Isolation and quantification of alternariols from endophytic fungus, Alternaria alternata: LC-ESI-MS/MS analysis. Chem Select 2(1):364–368

    CAS  Google Scholar 

  • Deshmukh SK (2018) Translating endophytic fungal research towards pharmaceutical applications. Kavaka 50:1–13

    Google Scholar 

  • Deshmukh PV, Vaidya MG (1968) L-2-Amino-3-phenyl-l-propanol (L-Phenylalaninol) as a constituent of a fungal metabolite. Nature 217(5131):849–849

    CAS  Google Scholar 

  • Deshmukh SK, Verekar SA (2014) Fungal endophytes: an amazing and hidden source of cytotoxic compounds anticancer compounds from endophytic fungi. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghubanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New York, pp 59–89

    Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar SA, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anti-cancer activity of Ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789

    CAS  PubMed  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave S (2015) Endophytic fungi: an untapped source for antibacterials. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00715

  • Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018a) Endophytic fungi: a source of potential antifungal compounds. J Fungi 4:77. https://doi.org/10.3390/jof4030077

    Article  CAS  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2018b) Marine fungi: a potential source of cytotoxic compounds. Front Microbiol 8:2536. https://doi.org/10.3389/fmicb.2017.02536

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2018c) Mangrove-associated fungi a novel source of potential anticancer compounds. J Fungi 4:101. https://doi.org/10.3390/jof4030101

    Article  CAS  Google Scholar 

  • Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2019a) Fungal endophytes - a novel source of cytotoxic compounds. In: Jha S (ed) Endophytes and secondary metabolites, Reference series in phytochemistry. Springer, Cham, pp 1–62

    Google Scholar 

  • Deshmukh SK, Gupta MK, Lenka SK (2019b) Endophytic fungi are the alternate source of high value plant secondary metabolites. In: Satyanarayana T, Das SK, Johri BN (eds) Microbial diversity in ecosystem sustainability and biotechnological applications, Soil and agroecosystems, vol 2. Spinger, Cham, pp 493–532

    Google Scholar 

  • Deshmukh SK, Agrawala S, Prakash V, Reddy MS, Gupta MK (2020) Anti-infectives from mangrove endophytic fungi. South Afr J Bot 134:237–263

    CAS  Google Scholar 

  • Deshmukh SK, Agrawala S, Gupta MK, Patidar RK, Ranjan N (2021) Fungi: a novel source of anti-viral compounds. Curr Pharm Biotechnol. https://doi.org/10.2174/1389201022666210615120720

  • Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochemistry 98:183–189

    CAS  PubMed  Google Scholar 

  • Divekar PV, Read G, Vining LC, Haskins RH (1959a) Volucrisporin: isolation, structure, and synthesis of the methyl ether. Can J Chem 37(12):1970–1976

    CAS  Google Scholar 

  • Divekar PV, Read G, Vining LC (1959b) Volucrisporin: a novel fungal pigment. Chem Ind 24:731–732

    Google Scholar 

  • Doss V, Govindharajan K, Ravichandran D (2016) Screening of Taxol, an anticancer drug produced from Pestalotiopsis stellata isolated from Ficus infectoria. Life Sci J 13(10):13–21

    CAS  Google Scholar 

  • Elias BC, Said S, Albuquerque S, Pupo MT (2006) The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol Res 161:273–280

    CAS  PubMed  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124

    CAS  PubMed  Google Scholar 

  • Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T (1994) Fungal metabolites. Part II. A potent immunosuppressive activity of Isaria sinclairii metabolites. J Antibiot 47:208–215

    CAS  Google Scholar 

  • Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Medica 67:150–152

    CAS  PubMed  Google Scholar 

  • Ganapathi K (1957) The biosynthesis of penicillin. Experietia 13:172–176

    CAS  Google Scholar 

  • Ganapathi K (1961) Regulatory mechanisms in microorganisms their molecular basis. J Sci lnd Res 20A:569–576

    CAS  Google Scholar 

  • Ganapathi K, Boyce RS (1965) Use of resorcinol-sulphuric acid reagents for the identification and estimation of some sugars and nucleic acids. Indian J Biochem 2:53

    PubMed  Google Scholar 

  • Ganapathi K, Deshpande VN (1957) Biosynthesis of benzylpenicillin by mycelial suspensions of Penicillium chrysogenum. Experientia 13:475

    PubMed  Google Scholar 

  • Ganapathi K, Deshpande VN (1958) Biosynthesis of benzylpenicillin by resting cells of Penicillium chrysogenum. Part I - Effect of various carbohydrates & carbon sources. J Sci Ind Res 17C:59–66

    Google Scholar 

  • Ganapathi K, Irani RJ (1958a) The effect of glycerol on the biosynthesis of benzylpenicillin by the washed cells of Penicillium chrysogenum. Experientia 14:329

    PubMed  Google Scholar 

  • Ganapathi K, Irani RJ (1958b) Carbohydrate constituents of the mycelium of Penicillium chrysogenum grown in media with different sources of carbon. Nature 183:758–760

    Google Scholar 

  • Ganapathi K, Irani RJ (1959) Myo-inositol in the biosynthesis of benzylpenicillin by the mycelial suspensions of Penicillium chrysogenum. Experientia 15:22

    PubMed  Google Scholar 

  • Ganapathi K, Irani RJ (1960a) Carbohydrate constituents of the mycelium of Penicillium chrysogenum grown in media with different sources of carbon. J Sci Ind Res 19C:207–216

    Google Scholar 

  • Ganapathi K, Irani RJ (1960b) Effect of carbohydrates & some carbon sources on biosynthesis of benzylpenicillin by washed cells of Penicillium chrysogenum. J Sci Ind Res 19C:216–222

    Google Scholar 

  • Ganapathi K, Irani RJ (1960c) Chemical pathways in carbohydrate metabolism. J Sci Ind Res 19A:9–18

    CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2007) Endophytic fungal diversity from young, mature and senescent leaves of Ocimum basilicum L. with special reference to taxol production. Indain J Sci Technol 1(1):1–12

    Google Scholar 

  • Gangadevi V, Muthumary J (2008a) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24(5):717–724

    CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2008b) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant Justicia gendarussa. Mycol Balcanica 5(1):1–4

    Google Scholar 

  • Gangadevi V, Muthumary J (2009a) A novel endophytic Taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant Terminalia arjuna. Appl Biochem Biotechnol 158(3):675–684

    CAS  PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2009b) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 52:9–15

    CAS  PubMed  Google Scholar 

  • Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24:1433–1438

    CAS  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23(10):1372–1380

    CAS  PubMed  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2014a) Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew. Ann Microbiol 64(3):1413–1422

    CAS  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2014b) Enhancement of taxol production from endophytic fungus Fusarium redolens. Biotechnol Bioprocess Eng 19(5):908–915

    CAS  Google Scholar 

  • Ghannoum MA, Kim HG, Long L (2007) Efficacy of aminocandin in the treatment of immunocompetent mice with haematogenously disseminated fluconazole-resistant candidiasis. J Antimicrob Chemother 59:556–559

    CAS  PubMed  Google Scholar 

  • Ghosh D, Ganguli BN (1961) Production of penicillin with waste mycelium of Penicillium chrysogenum as the sole source of nitrogen. Appl Microbiol 9:252–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50:464–468

    CAS  PubMed  Google Scholar 

  • Gohar UF, Mukhtar H, Ul Haq I (2015) Isolation and screening of endophytic fungi for the reduction of taxol. Pak J Bot 47(Spec.Issue):355–358

    CAS  Google Scholar 

  • Gohil A, Deshmukh SK, Bhattacharya V, Verekar SA, Lavhale R, Kate AS (2019) A novel isocoumarin from fungus Exophiala spinifera with anti-diabetic activity. Nat Prod Res. https://doi.org/10.1080/14786419.2019.1624957

  • Gokul RK, Manikandan R, Arulvasu C, Pandi M (2015) Antiproliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim Acta A Mol Biomol Spectrosc 138:667–674

    Google Scholar 

  • Gond SK, Kharwar RN, White JF (2014) Will fungi be the new source of the blockbuster drug taxol? Fungal Biol Rev 28:77–84

    Google Scholar 

  • Goutam J, Sharma G, Tiwari VK, Mishra A, Kharwar RN, Ramaraj V, Koch B (2017) Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthes aspera Varanasi, India. Front Microbiol 8:1334. https://doi.org/10.3389/fmicb.2017.01334

    Article  PubMed  PubMed Central  Google Scholar 

  • Goutam J, Kharwar RN, Tiwari VK, Singh R, Sharma D (2020) Efficient production of the potent antimicrobial metabolite terrein from the fungus Aspergillus terreus. Nat Prod Commun 15(3):1–5

    Google Scholar 

  • Guo Z, She Z, Shao C, Wen L, Liu F, Zheng Z, Lin Y (2007) 1H and 13C NMR signal assignments of paecilin A and B, two new chromone derivatives from mangrove endophytic fungus Paecilomyces sp. (tree 1–7). Magn Reson Chem 45(9):777–780

    CAS  PubMed  Google Scholar 

  • Gurudatt PS, Priti V, Shweta S, Ramesha BT, Ravikanth G, Vasudeva R, Amna T, Deepika S, Ganeshaiah KN, Shaanker RU, Puri S, Qazi GN (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98(8):1006–1010

    CAS  Google Scholar 

  • Hadjur C, Richard MJ, Parat MO, Jardon P, Favier A (1996) Photodynamic effect of Hypericin on lipid peroxidation and antioxidant status in melanoma cells. J Photochem Photobiol 64:375–381

    CAS  Google Scholar 

  • Harmon AD, Weiss U, Silverton JV (1979) The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya) (Meliaceae). Tetrahedron Lett 8:721–724

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Google Scholar 

  • Hawksworth DL, Luecking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):FUNK-0052-2016

    Google Scholar 

  • Hemamalini V, Kumar DJ, Mukesh RA, Immaculate N, Srimathi S, Muthumary J, Kalaichelvan PT (2015) Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. JAIR 3(12):645–649

    CAS  Google Scholar 

  • Huan QU, Min LV, Hui XU (2015) Piperine: bioactivities and structural modifications. Mini Rev Med Chem 15:145–156

    Google Scholar 

  • Jasim B, Sahadevan N, Chithra S, Mathew J, Radhakrishnan EK (2019) Epigenetic modifier based enhancement of piperine production in endophytic Diaporthe sp. PF20. Proc Natl Acad Sci India Sect B Biol Sci 89:671–677

    CAS  Google Scholar 

  • Jayanthi G, Karthikeyan K, Muthumary J (2015) Isolation and characterization of anticancer compound, taxol from an endophytic fungus Phomopsis longicolla. Int J Curr Res 7(2):12727–12734

    Google Scholar 

  • Kadkol MV, Gopalkrishnan KS, Narasimhachari N (1971) Isolation and characterization of naphthaquinone pigments from Torula herbarum (Pers.). Herbarin and dehydroherbarin. J Antibiot 24(4):245–248

    CAS  Google Scholar 

  • Kamuhabwa AR, Agostinis PM, D’Hallewin MA, Baert L, de Witte PA (2001) Cellular photo destruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 74(2):126–132

    CAS  PubMed  Google Scholar 

  • Kanetkar PV, Singhal RS, Kamat MY (2007) Gymnema sylvestre: a memoir. Recent advances in Indian herbal drug research. J Clin Biochem Nutr 41:77–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasaei A, Mobini-Dehkordi M, Mahjoubi F, Saffar B (2017) Isolation of taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr Microbiol 74(6):702–709

    CAS  PubMed  Google Scholar 

  • Kato M, Sakai K, Endo A (1992) Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim Biophys Acta 1120:113–116

    CAS  PubMed  Google Scholar 

  • Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58(3):233–238

    CAS  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    CAS  PubMed  Google Scholar 

  • Koul M, Meena S, Kumar A, Sharma PR, Singamaneni V, Riyaz-Ul-Hassan S, Hamid A, Chaubey A, Prabhakar A, Gupta P, Singh S (2016) Secondary metabolites from endophytic fungus Penicillium pinophilum induce ROS-Mediated apoptosis through mitochondrial pathway in pancreatic cancer cells. Planta Medica 82(4):344–355

    CAS  PubMed  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121

    CAS  Google Scholar 

  • Koyama K, Natori S (1988) Further characterization of seven bis(naphtho-γ-pyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chem Pharm Bull 36:146–152

    CAS  Google Scholar 

  • Koyama K, Ominato K, Natori S, Tashiro T, Tsuruo T (1998) Cytotoxicity and antitumor activities of fungal bis(naphtho-gamma-pyrone) derivatives. J Pharmacobiodyn 11:630–635

    Google Scholar 

  • Kumar A, Ahmad A (2013) Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal Biotransform 31(2):89–93

    CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013a) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Qadri M, Sharma PR, Kumar A, Andotra SS, Kaur T, Kapoor K, Gupta VK, Kant R, Hamid A, Johri S (2013b) Tubulin inhibitors from an endophytic fungus isolated from Cedrus deodara. J Nat Prod 76(2):194–199

    CAS  PubMed  Google Scholar 

  • Kumar S, Nalli Y, Qadri M, Riyaz-Ul-Hassan S, Satti NK, Gupta V, Bhushan S, Ali A (2017) Isolation of three new metabolites and intervention of diazomethane led to separation of compound 1 & 2 from an endophytic fungus, Cryptosporiopsis sp. depicting cytotoxic activity. Med Chem Res 26(11):2900–2908

    CAS  Google Scholar 

  • Kumar P, Singh B, Thakur V, Thakur A, Thakur N, Pandey D, Chand D (2019) Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep 24:e00395

    Google Scholar 

  • Kumara MP, Sreejayan N, Priti V, Ramesha BT, Ravikanth G, Ganeshaiah KN, Vasudeva R, Mohan J, Santhoshkumar TR, Mishra PD, Viswakarma R, Shaanker RU (2010) Dysoxylum binectariferum Hook. f (Meliaceae), a rich source of rohitukine. Fitoterapia 81(2):145–148

    Google Scholar 

  • Kumara MP, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anticancer activity. Antonie Van Leeuwenhoek 101(2):323–329

    CAS  Google Scholar 

  • Kumaran RS, Hur BK (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem 54(1):21–30

    CAS  PubMed  Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008a) Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J Biosci Bioeng 106:103–106

    CAS  PubMed  Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008b) Isolation and identification of taxol, an anticancer drug from Phyllosticta melochiae Yates, an endophytic fungus of Melochia corchorifolia L. Food Sci Biotechnol 17(6):1246–1253

    CAS  Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008c) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8:438–446

    CAS  Google Scholar 

  • Kumaran RS, Muthumary J, Kim EK, Hur BK (2009) Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol Bioproc Eng 14:76–83

    CAS  Google Scholar 

  • Kumaran RS, Kim HJ, Hur BK (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110(5):541–546

    CAS  PubMed  Google Scholar 

  • Kumaran RS, Jung H, Kim HJ (2011) In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 11:264–271

    CAS  Google Scholar 

  • Kumaran RS, Choi YK, Lee S, Jeon HJ, Jung H, Kim HJ (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr J Biotechnol 11(4):950–960

    CAS  Google Scholar 

  • Kusari S, Lamshoeft M, Zuehlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162

    CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogs. J Nat Prod 72(1):2–7

    CAS  PubMed  Google Scholar 

  • Kusari S, Lamshoeft M, Spiteller M (2009b) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030

    CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Kosuth J, Cellarova E, Spiteller M (2009c) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72(10):1825–1835

    CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss.that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol®(paclitaxel) using endophyte biotechnology. Trends Biotechnol 32(6):304–311

    CAS  PubMed  Google Scholar 

  • Kwok KK, Vincent EC, Gibson JN (2016) Antineoplastic drugs in pharmacology and therapeutics for dentistry, 7th edn, Chapter 036, pp 530–562

    Google Scholar 

  • Leiter J, Downing V, Hartwell JL, Shear MJ (1950) Damage induced in sarcoma 37 with podophyllin, podophyllotoxin alpha-peltatin, beta-peltatin, and quercetin. J Natl Cancer Inst 10(6):1273–1293

    CAS  PubMed  Google Scholar 

  • Li J, Sidhu R, Ford E et al (1998) The induction of taxol production in the endophytic fungus—Periconia sp from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264

    CAS  Google Scholar 

  • Liao WY, Shen CN, Lin LH, Yang YL, Han HY, Chen JW, Kuo SC, Wu SH, Liaw CC (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75(4):630–635

    CAS  PubMed  Google Scholar 

  • Liu HM, Kiuchi F, Tsuda Y (1992) Isolation and structure elucidation of gymnemic acids, anti-sweet principles of Gymnema sylvestre. Chem Pharm Bull 40:1366–1375

    CAS  Google Scholar 

  • Liu HW, Yang YF, Li YY, Wang S, Qiu DY (2016) Cloning and expression of GGPP synthase gene from paclitaxel-producing endophytic fungi (Penicillium aurantiogriseum) in Corylus avellana. Guangxi Zhiwu 36(4):456–461

    CAS  Google Scholar 

  • Lyu HN, Liu HW, Keller NP, Yin WB (2020) Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat Prod Rep 37(1):6–16

    CAS  PubMed  Google Scholar 

  • Magotra A, Kumar M, Kushwaha M, Awasthi P, Raina C, Gupta AP, Shah BA, Gandhi SG, Chaubey A (2017) Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express 7(1):1–10

    CAS  Google Scholar 

  • Maneesai P, Norman S, Krongkarn C (2012) Piperine is anti-hyperlipidemic and improves endothelium-dependent vasorelaxation in rats on a high cholesterol diet. J Physiol Biomed Sci 25:27–30

    Google Scholar 

  • Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89:58–71

    Google Scholar 

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location and their antimicrobial potential. Microb Ecol 64:388–398

    PubMed  Google Scholar 

  • Mishra PD, Deshmukh SK, Kulkarni-Almeida A, Roy S, Jain S, Verekar SA, Balakrishnan A, Vishwakarma R (2013) Anti-inflammatory and anti-diabetic naphthoquinones from an endophytic fungus. Indian J Chem Sect B 52:555–557

    Google Scholar 

  • Mishra PD, Verekar SA, Deshmukh SK, Joshi KS, Fiebig HH, Kelter G (2015) Altersolanol A: a selective cytotoxic anthraquinone from a Phomopsis sp. Lett Appl Microbiol 60(4):387–391

    CAS  PubMed  Google Scholar 

  • Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17(12):4096–4105

    CAS  PubMed  Google Scholar 

  • Moussa M, Ebrahim W, Bonus M, Gohlke H, Mándi A, Kurtán T, Hartmann R, Kalscheuer R, Lin W, Liu Z, Proksch P (2019) Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Adv 9(3):1491–1500

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay T, Roy K, Coutinho L, Rupp RH, Ganguli BN, Fehlhaber HW (1987) Fumifungin, a new antifungal antibiotic from Aspergillus fumigatus Fresenius 1863. J Antibiot 40(7):1050–1052

    CAS  Google Scholar 

  • Mukhopadhyay T, Roy K, Bhat RG, Sawant SN, Blumbach J, Ganguli BN, Fehlhaber HW, Kogler H (1992) Deoxymulundocandin—a new echinocandin type antifungal antibiotic. J Antibiot 45(5):618–623

    CAS  Google Scholar 

  • Mukhopadhyay T, Bhat RG, Roy K, Vijayakumar EKS, Ganguli BN (1998) Aranochlor A and Aranochlor B, two new metabolites from Pseudoarachniotus roseus. J Antibiot 51(4):439–441

    CAS  Google Scholar 

  • Nagarajan R, Narasimhachari N, Kadkol MV, Gopalkrishnan KS (1971) Structure of herbarin. J Antibiot 24(4):249–252

    CAS  Google Scholar 

  • Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 30(Suppl 2):129–134

    CAS  PubMed  Google Scholar 

  • Naik RG, Kattige SL, Bhat SV, Alreja B, de Souza NJ, Rupp RH (1988) An anti-inflammatory cum immunomodulatory piperidinylbenzopyranone from Dysoxylum binectariferum: isolation, structure and total synthesis. Tetrahedron 44:2081–2086

    CAS  Google Scholar 

  • Nalli Y, Mirza DN, Wani ZA, Wadhwa B, Mallik FA, Raina C, Chaubey A, Riyaz-Ul-Hassan S, Ali A (2015) Phialomustin A-D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Adv 5:95307–95312

    CAS  Google Scholar 

  • Nalli Y, Arora P, Khan S, Malik F, Riyaz-Ul-Hassan S, Gupta V, Ali A (2019) Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28(3):260–266

    CAS  Google Scholar 

  • Narasimhachari N, Vining LC (1963) Studies on the pigments of Penicillium herquei. Can J Chem 41:641–648

    CAS  Google Scholar 

  • Narasimhachari N, Vining LC (1972) Herqueichrysin, a new phenalenone antibiotic from Penicillium herquei. J Antibiot 25(3):155–162

    CAS  Google Scholar 

  • Narasimhachari N, Gopalkrishnan KS, Haskins RH, Vining LC (1963) Production of the antibiotic atrovenetin by a strain of Penicillium herquei Bainier and Sartory. Can J Microbiol 9:134–136

    CAS  Google Scholar 

  • Naseer S, Bhat KA, Qadri M, Riyaz-Ul-Hassan S, Malik FA, Khuroo MA (2017) Bioactivity-guided isolation, antimicrobial and cytotoxic evaluation of secondary metabolites from Cladosporium tenuissimum associated with Pinus wallichiana. Chem Select 2(3):1311–1314

    CAS  Google Scholar 

  • Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Brasil 29(4):615–632

    Google Scholar 

  • Nithya K, Muthumary J (2009) Growth studies of Colletotrichum gloeosporioides (Penz.) Sacc.-a taxol producing endophytic fungus from Plumeria acutifolia. Ind J Sci Technol 6:14–19

    Google Scholar 

  • Padhi S, Masi M, Cimmino A, Tuzi A, Jena S, Tayung K, Evidente A (2019) Funiculosone, a substituted dihydroxanthene-1, 9-dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry 157:175–183

    CAS  PubMed  Google Scholar 

  • Pamphile JA, dos Santos Ribeiro MA, Polonio JC (2017) Secondary metabolites of endophyte fungi: techniques and biotechnological approaches. In: Diversity and benefits of microorganisms from the tropics. Springer, Cham, pp 185–206

    Google Scholar 

  • Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J (2011) Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol 10(8):1428–1435

    CAS  Google Scholar 

  • Paranagama PA, Wijeratne EMK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2007) Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705

    CAS  PubMed  Google Scholar 

  • Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Appl Biochem Biotechnol 172(6):3141–3152

    CAS  PubMed  Google Scholar 

  • Pathania AS, Guru SK, Ul Ashraf N, Riyaz-Ul-Hassan S, Ali A, Tasduq SA, Malik F, Bhushan S (2015) A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells. Eur J Pharmacol 765:75–85

    CAS  PubMed  Google Scholar 

  • Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P (2014) A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 94(5):834–840

    CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of Podophyllotoxin and related aryltetralin lignans. J Biotechnol 122(4):494–510

    CAS  PubMed  Google Scholar 

  • Rahier NJ, Molinier N, Long C, Deshmukh SK, Kate AS, Ranadive P, Verekar SA, Jiotode M, Lavhale RR, Tokdar P, Balakrishnan A, Meignan S, Robichon C, Gomes B, Aussagues Y, Samson A, Sautel F, Bailly C (2015) Anticancer activity of koningic acid and semisynthetic derivatives. Bioorg Med Chem 23:3712–3721

    CAS  PubMed  Google Scholar 

  • Rao GS, Sinsheimer JE (1971) Constituents Gymnema sylvestre leaves VIII: isolation, chemistry, and derivatives of gymnemagenin and gymnestrogenin. J Pharm Sci 60(2):190–1933

    CAS  PubMed  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28(2):290–344

    CAS  PubMed  Google Scholar 

  • Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S (2016) In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol 391:95–101

    CAS  PubMed  Google Scholar 

  • Rebecca AIN, Kumar DJM, Srimathi S, Muthumary J, Kalaichelvan PT (2011) Isolation of Phoma species from Aloe vera: an endophyte and screening the fungus for Taxol production. World J Sci Technol 1(11):23–31

    CAS  Google Scholar 

  • Rebecca AIN, Hemamalini V, Kumar DJM, Srimathi S, Muthumary J, Kalaichelvan PT (2012) Endophytic Chaetomium sp. from Michelia champaca L. and its taxol production. J Acad Indus Res 1(2):68–72

    Google Scholar 

  • Reen FJ, Romano S, Dobson AD, O’Gara F (2015) The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 13:4754–4783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209

    CAS  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Sultan P, Ahmad K, Khajuria R, Qazi GN (2009a) Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Nat Prod Res 23(11):1050–1057

    CAS  PubMed  Google Scholar 

  • Rehman S, Shawl AS, Sultana S, Kour A, Riyaz-ul-Hassan S, Qazi GN (2009b) In vitro cytotoxicity of an endophytic fungus isolated from Nothapodytes foetida. Ann Microbiol 59(1):157–161

    CAS  Google Scholar 

  • Romano S, Jackson S, Patry S, Dobson A (2018) Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Mar Drugs 16:244

    PubMed Central  Google Scholar 

  • Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48(1):353–374

    CAS  PubMed  Google Scholar 

  • Roy K, Mukhopadhyay T, Reddy GCS, Desikan KR, Ganguli BN (1987) Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 40:275–280

    CAS  Google Scholar 

  • Roy K, Mukhopadhyay T, Reddy GCS, Desikan KR, Rupp RH, Ganguli BN (1988) Aranorosin, a novel antibiotic from Pseudoarachniotus roseus. J Antibiot 41(12):1780–1784

    CAS  Google Scholar 

  • Roy K, Vijayakumar EKS, Mukhopadhyay T, Chatterjee S, Bhat RG, Blumbach J, Ganguli BN (1992) Aranorosinol A and aranorosinol B, two new metabolites from Pseudoarachniotus roseus: production, isolation, structure elucidation and biological properties. J Antibiot 45(10):1592–1598

    CAS  Google Scholar 

  • Roy K, Chatterjee S, Deshmukh SK, Vijayakumar EKS, Ganguli BN, Fehlhaber HW (1996) Orbuticin, a new secondary metabolite from Acremonium butyri. J Antibiot 49(11):1186–1187

    CAS  Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250:539–549

    CAS  PubMed  Google Scholar 

  • San Gupta R, Chandran RR, Divekar PV (1966) Botryodiplodin, a new antibiotic from Botryodiplodia theobromae II. Production, isolation and biological properties. Indian J Exp Biol 4(3):152–153

    CAS  PubMed  Google Scholar 

  • Sangwan NS, Sabir F, Mishra S, Bansal S, Sangwan RS (2014) Withanolides from Withania somnifera Dunal: development of cellular technology and their production. Recent Pat Biotechnol 8:25–35

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Parthasarathy R (2018) Withanolide production by fungal endophyte isolated from Withania somnifera. Nat Prod Res 32(13):1573–1577

    CAS  PubMed  Google Scholar 

  • Schlingmann G, Milne L, Williams DR, Carter GT (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256 II. Isolation and structure determination. J Antibiot 51(3):303–316

    CAS  Google Scholar 

  • Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67(4):321–331

    CAS  Google Scholar 

  • Shah M, Deshmukh SK, Verekar SA, Kate AS, Rekha V, Kulkarni-Almeida A (2015) Anti-inflammatory properties of mutolide, a major constituent of the fungus. PM0651419. SpringerPlus 4:706. https://doi.org/10.1186/s40064-015-1493-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Kumar J, Singh DK, Mishra A, Verma SK, Gond SK, Kumar A, Singh N, Kharwar RN (2017) Induction of cryptic and bioactive metabolites through natural dietary components in an endophytic fungus Colletotrichum gloeosporioides. Front Microbiol 8:1126

    PubMed  PubMed Central  Google Scholar 

  • Sharma V, Sharma N, Arora D, Singamaneni V, Kumar A, Kushwaha M, Bhushan S, Jaglan S, Gupta P (2018a) Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorg Med Chem Lett 28(12):2217–2221

    CAS  PubMed  Google Scholar 

  • Sharma N, Kushwaha M, Arora D, Jain S, Singamaneni V, Sharma S, Shankar R, Bhushan S, Gupta P, Jaglan S (2018b) New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J Appl Microbiol 125(1):111–120

    CAS  PubMed  Google Scholar 

  • Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Medica 67(04):374–376

    CAS  PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey.ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    CAS  PubMed  Google Scholar 

  • Singh VP, Yedukondalu N, Sharma V, Kushwaha M, Sharma R, Chaubey A, Kumar A, Singh D, Vishwakarma RA (2018) Lipovelutibols A–D: cytotoxic lipopeptaibols from the himalayan cold habitat fungus Trichoderma velutinum. J Nat Prod 81(2):219–226

    CAS  PubMed  Google Scholar 

  • Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74(12):2497–2504

    CAS  PubMed  Google Scholar 

  • Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN (2015) An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 25(19):2570–2576

    CAS  PubMed  Google Scholar 

  • Soliman SSM, Mosa KA, El-Keblawy AA, Husseiny MI (2017) Exogenous and endogenous increase in fungal GGPP increased fungal taxol production. Appl Microbiol Biotechnol 101(20):7523–7533

    CAS  PubMed  Google Scholar 

  • Somjaipeng S, Medina A, Magan N (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb Technol 90:69–75

    CAS  PubMed  Google Scholar 

  • Sood RS, Roy K, Reddy GC, Reden J, Ganguli BN (1982) 3-Methoxy-2,5-toluquinone from Aspergillus sp. HPL Y-30,212. Fermentation, isolation, characterization and biological properties. J Antibiot 35(8):985–987

    CAS  Google Scholar 

  • Sreekanth D, Syed A, Sarkar S, Sarkar D, Santhakumari B, Ahmad A, Khan MI (2009) Production, purification, and characterization of taxol and 10-DABIII from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J Microbiol Biotechnol 19(11):1342–1347

    CAS  PubMed  Google Scholar 

  • Sreekanth D, Sushim GK, Syed A, Khan BM, Ahmad A (2011) Molecular and morphological characterization of a taxol-producing endophytic fungus Gliocladium sp., from Taxus baccata. Mycobiology 39(3):151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahelin HF (1996) The history of Cyclosporin A (Sandimmune) revisited: another point of view. Experientia 52:5–13

    CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–217

    CAS  PubMed  Google Scholar 

  • Subban K, Singh S, Chelliah J, Subban K, Johnpaul M, Subramani R (2017) Fungal 7-epi-10-Deacetyltaxol produced by an endophytic Pestalotiopsis microspora induces apoptosis in human hepatocellular carcinoma cell line (HepG2). BMC Complement Altern Med 17(1):504

    PubMed  PubMed Central  Google Scholar 

  • Sunila ES, Kuttan G (2004) Immunomodulatory and antitumor activity of Piper longum Linn.and piperine. J Ethnopharmacol 90:339–346

    CAS  PubMed  Google Scholar 

  • Taware R, Abnave P, Patil D, Rajamohananan PR, Raja R, Soundararajan G, Kundu GC, Ahmad A (2014) Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustain Chem Process 2:1–9

    Google Scholar 

  • Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its proapoptotic and anti-invasive potential via the inhibition of NF-jB activity. Bioorg Med Chem 21:3850–3858

    CAS  PubMed  Google Scholar 

  • Tolbert JA (2003) Lovastatin and beyond: the history of HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2:517–526

    Google Scholar 

  • Vander Molen KM, Darveaux BA, Chen WL, Swanson SM, Pearce CJ, Oberlies NH (2014) Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Adv 4(35):18329–18335

    CAS  Google Scholar 

  • Vasundhara M, Baranwal M, Sivaramaiah N, Kumar A (2017) Isolation and characterization of trichalasin-producing endophytic fungus from Taxus baccata. Ann Microbiol 67(3):255–261

    CAS  Google Scholar 

  • Vedantham K, Chaterji S, Kitsongsermthon J, Park K, Garner J (2010) Future outlook for drug eluting stents. In: Drug-device combination products. Woodhead Publishing, Cambridge, UK, pp 117–153

    Google Scholar 

  • Venkatachalam R, Subban K, Paul MJ (2008) Taxol from Botryodiplodia theobromae (BT 115)-an endophytic fungus of Taxus baccata. J Biotechnol 136:S189–S190

    Google Scholar 

  • Vennila R, Thirunavukkarasu SV, Muthumarya J (2010) In-vivo studies on anticancer activity of taxol isolated from an endophytic fungus Pestalotiopsis pauciseta Sacc. VM1. Asian J Pharm Clin Res 3(4):30–34

    CAS  Google Scholar 

  • Vennila R, Kamalraj S, Muthumary J (2012) In vitro studies on anticancer activity of fungal taxol against human breast cancer cell line MCF-7 cells. Biomed Aging Pathol 2(1):16–18

    CAS  Google Scholar 

  • Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig HH, Kelter G, Maier A (2014) Anticancer activity of a new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701

    CAS  Google Scholar 

  • Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4(11):1511–1532

    CAS  PubMed  Google Scholar 

  • Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431

    CAS  Google Scholar 

  • Vijayakumar EKS, Roy K, Chatterjee S, Deshmukh SK, Ganguli BN, Kogler H, Fehlhaber HW (1996) Arthrichitin a new cell wall active metabolite from Arthrinium phaeospermum. J Org Chem 61:6591–6593

    CAS  PubMed  Google Scholar 

  • Vijayakumar EKS, Roy K, Hiramath CP, Deshmukh SK, Mukhopadhyay T, Kogler H (2001) L970843 and L970844, two new antifungal metabolites from an unidentified fungal species HIL Y-903146. J Antibiot 54:973–976

    CAS  Google Scholar 

  • Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from C. acuminata. J Am Chem Soc 88(16):3888–3890

    CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents VI: the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  • Warn PA, Sharp A, Morrissey G, Denning DW (2010) Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and -resistant strains of Aspergillus fumigatus. Int J Antimicrob Agents 35:146–151

    CAS  PubMed  Google Scholar 

  • White PT, Subramanian C, Motiwala HF, Cohen MS (2016) Natural withanolides in the treatment of chronic diseases. Adv Exp Med Biol 928:329–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127–140

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15:69/1–69/14. 14 pp

    Google Scholar 

  • Yedukondalu N, Arora P, Wadhwa B, Malik FA, Vishwakarma RA, Gupta VK, Riyaz-Ul-Hassan S, Ali A (2017) Diapolic acid A-B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. J Antibiot 70(2):212–215

    CAS  Google Scholar 

  • Zaki AG, El-Shatoury EH, Ahmed AS, Al-Hagar OE (2020) Response surface methodology-mediated improvement of the irradiated endophytic fungal strain, Alternaria brassicae AGF041 for Huperzine A-hyperproduction. Lett Appl Microbiol. https://doi.org/10.1111/lam.13435

  • Zilla MK, Qadri M, Pathania AS, Strobel GA, Nalli Y, Kumar S, Guru SK, Bhushan S, Singh SK, Vishwakarma RA, Riyaz-Ul-Hassan S (2013) Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry 95:291–297

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (SKD) is grateful to management of Hoechst Marion Roussel Ltd., Mumbai, and Piramal Enterprises Ltd, Mumbai, for providing facilities. RNK is grateful to the Head and Coordinator, CAS and FIST in Botany, Institute of Science, BHU, Varanasi, for providing the essential research facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshmukh, S.K., Kharwar, R.N. (2021). Fungi a Potential Source of Bioactive Metabolites an Indian Prospective. In: Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V. (eds) Progress in Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3307-2_16

Download citation

Publish with us

Policies and ethics