Skip to main content

Perovskite BiFeO3 Nanostructure Photocatalysts for Degradation of Organic Pollutants

  • Chapter
  • First Online:
Nanomaterials and Nanocomposites for Environmental Remediation

Abstract

Environmental remediation is a need of time, due to rapid industrialization, urbanization, and changing lifestyles of people. Nanomaterials offer great potential for efficient detection and removal of pollutants due to their vast array of useful properties. Recently, the magnetic property and catalytic activity of Bi-based oxide nanostructures have been exploited for environmental applications such as catalytic oxidation of recalcitrant pollutants and simultaneous magnetic recovery. The loss of the catalyst over cycles can be prenevted and makes these catalyst cost-effective. Thereby, bismuth (Bi)-based oxide nanostructures can serve as the right candidate for sustainable pollutant remediation. Among bismuth (Bi) -based oxide, perovskite type-BiFeO3 nanostructures are unique potential photocatalyst due to its multiferroic behaviour, narrow band gap and chemical stability. In this chapter, crystal structure, the state-of-the-art in the synthesis, charaterizations and photocatalytic degradation mechanism of BiFeO3 are discussed. The strategies to improve the photocatalytic performances of BiFeO3 for organic pollutants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achenbach GD, James WJ, Gerson R (1967) Preparation of single-phase polycrystalline BiFeO3. J Am Ceram Soc 50:437

    Article  CAS  Google Scholar 

  • Bai X, Wei J, Tian B, Liu Y, Reiss T, Guiblin N, Gemeiner P, Dkhil B, Infante IC (2016) Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J Phys Chem C 120:3595–3601

    Google Scholar 

  • Bharathkumar S, Sakar M, Balakumar S (2019) Fabrication of BiFeO3 nanostructures and their visible light photocatalytic degradation and water splitting properties. AIP Conf Proceed 2115:030167

    Google Scholar 

  • Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463

    Article  CAS  Google Scholar 

  • Chang J, Zhang L, Wang P (2018) Intelligent environmental nanomaterials. Environ Sci NANO 5:811–836

    Article  CAS  Google Scholar 

  • Chen D, Wang Q, Wang R, Shen G (2015) Ternary oxide nanostructured materials for supercapacitors: a review. J Mater Chem A 3:10158–10173

    Article  CAS  Google Scholar 

  • Cho CM, Noh JH, Cho I-S, An J-S, Hong KS, Kim JY (2008) Low-temperature hydrothermal synthesis of pure BiFeO3 nanopowders using triethanolamine and their applications as visible-light photocatalysts. J Am Ceram Soc 91:3753–3755

    Article  CAS  Google Scholar 

  • Chu Y, Martin L, Holcomb M, Ramesh R (2007) Controlling magnetism with multiferroics. Mater Today 10:16

    Article  CAS  Google Scholar 

  • Fan T, Chen C, Tang Z, Ni Y, Lu C (2015) Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater Sci Semicond Process 40:439–445

    Article  CAS  Google Scholar 

  • Fei L, Yuan J, Hu Y, Wu C, Wang J, Wang Y (2011) Visible light responsive perovskite BiFeO3 pills and rods with dominant facets. Cryst Growth Des 11:1049–1053

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  Google Scholar 

  • Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889

    Article  CAS  Google Scholar 

  • Gao T, Chen Z, Niu F, Zhou D, Huang Q, Zhu Y, Qin L, Sun X, Huang Y (2015) Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties. J Alloy Compd 648:564–570

    Article  CAS  Google Scholar 

  • Gao X, Dai Y, Fu F, Hua X (2016) 2D laminated cylinder-like BiFeO3 composites: hydrothermal preparation, formation mechanism, and photocatalytic properties. Solid State Sci 62:6–12

    Article  CAS  Google Scholar 

  • Ghosh S, Dasgupta S, Sen A, Maiti HS (2005) Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J Am Ceram Soc 88:1349

    Article  CAS  Google Scholar 

  • Glenda B, Simões AZ, Foschini CR, Antônio SG, Zaghete MA, A., Varela J (2011) A novel synthesis of perovskite bismuth ferrite nanoparticles. Process Appl Ceramics 5

    Google Scholar 

  • Guo R, Fang L, Dong W, Zheng F, Shen M (2010) Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys Chem C 114:21390

    Article  CAS  Google Scholar 

  • Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Humayun M, Zada A, Li Z, Xie M, Zhang X, Qu Y, Raziq F, Jing L (2016) Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl Catal B 180:219–226

    Article  CAS  Google Scholar 

  • Irfan S, Shen Y, Rizwan S, Wang H-C, Khan SB, Nan C-W (2017b) Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J Am Ceram Soc 100:31–40

    Article  CAS  Google Scholar 

  • Irfan S, Rizwan S, Shen Y, Li L, Asfandiyar, Butt S, Nan C-W (2017) The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Scientific Reports 7:42493

    Google Scholar 

  • Irfan S, Li L, Saleemi AS, Nan C-W (2017a) Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J Mater Chem A 5:11143–11151

    Article  CAS  Google Scholar 

  • Irfan S, Zhuanghao Z, Li F, Chen Y-X, Liang G-X, Luo J-T, Ping F (2019) Critical review: bismuth ferrite as an emerging visible light active nanostructured photocatalyst. J Market Res 8:6375–6389

    CAS  Google Scholar 

  • Jiang J, Zou J, Anjum MN, Yan J, Huang L, Zhang Y, Chen J (2011) Synthesis and characterization of wafer-like BiFeO3 with efficient catalytic activity. Solid State Sci 13:1779–1785

    Article  CAS  Google Scholar 

  • Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19

    Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76:2764

    Article  CAS  Google Scholar 

  • Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat 41:131–169

    Article  CAS  Google Scholar 

  • Lam S-M, Sin J-C, Mohamed AR (2017) A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater Res Bull 90:15–30

    Article  CAS  Google Scholar 

  • Lazenka VV, Zhang G, Vanacken J, Makoed II, Ravinski AF, Moshchalkov VV (2012) Structural transformation and magnetoelectric behaviour in Bi 1−x Gd x FeO3 multiferroics. J Phys D: Appl Phys 45:125002

    Google Scholar 

  • Liu T, Xu Y, Feng S, Zhao J (2011a) A Facile Route to the synthesis of BiFeO3 at low temperature. J Am Ceram Soc 94:3060

    Article  CAS  Google Scholar 

  • Liu B, Hu B, Du Z (2011b) Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires. Chem Commun (camb) 47:8166–8168

    Article  CAS  Google Scholar 

  • Liu G, Wang T, Zhou W, Meng X, Zhang H, Liu H, Kako T, Ye J (2015) Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. J Mater Chem C 3:7538–7542

    Article  CAS  Google Scholar 

  • Li Z, Shen Y, Yang C, Lei Y, Guan Y, Lin Y, Liu D, Nan C-W (2013) Significant enhancement in the visible light photocatalytic properties of BiFeO3–graphene nanohybrids. J Mater Chem A 1:823–829

    Article  CAS  Google Scholar 

  • Li YA, Li J, Chen L, Sun H, Zhang H, Guo H, Feng L (2019) In situ synthesis of au-induced hierarchical nanofibers/nanoflakes structured BiFeO3 homojunction photocatalyst with enhanced photocatalytic activity. Front Chem 6

    Google Scholar 

  • Li J, Wang Y, Ling H, Qiu Y, Lou J, Hou X, Bag SP, Wang J, Wu H, Chai G (2019) Significant enhancement of the visible light photocatalytic properties in 3D BiFeO3/graphene composites. Nanomaterials 9:65

    Article  CAS  Google Scholar 

  • Luo J, Maggard PA (2006) Hydrothermal synthesis and photocatalytic activities of SrTiO3-Coated Fe2O3 and BiFeO3. Adv Mater 18

    Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:4964828

    Google Scholar 

  • Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C 12:237–268

    Article  CAS  Google Scholar 

  • Mao Y, Park T-J, Wong SS (2005) Synthesis of classes of ternary metal oxide nanostructures. Chem Commun 5721–5735

    Google Scholar 

  • Mukherjee JL, Wang FY (1971) Kinetics of solid-state reaction of Bi2O3 and Fe2O3. J Am Ceram Soc 54:31

    Article  CAS  Google Scholar 

  • Niu F, Chen D, Qin L, Gao T, Zhang N, Wang S, Chen Z, Wang J, Sun X, Huang Y (2015) Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances. Sol Energy Mater Sol Cells 143:386–396

    Article  CAS  Google Scholar 

  • Palai R, Katiyar RS, Schmid H, Tissot P, Clark S, Robertson J, Redfern S, Catalan G, Scott J (2008) β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys Rev B 77:014110

    Google Scholar 

  • Papadas IT, Subrahmanyam KS, Kanatzidis MG, Armatas GS (2015) Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications. Nanoscale 7:5737–5743

    Article  CAS  Google Scholar 

  • Peng S-H, Wang W-X, Li X, Yen Y-F (2004) Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere 57:839–851

    Article  CAS  Google Scholar 

  • Popa M, Crespo D, Calderon-Moreno JM, Preda S, Fruth V (2007) Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor. J American Ceramic Soc 90:2723

    Google Scholar 

  • Sakar M, Balakumar S, Saravanan P, Bharathkumar S (2015) Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1−xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7:10667–10679

    Article  CAS  Google Scholar 

  • Sakar M, Balakumar S, Saravanan P, Bharathkumar S (2016) Particulates versus fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures. Nanoscale 8:1147–1160

    Google Scholar 

  • Samadi M, Shivaee HA, Pourjavadi A, Moshfegh AZ (2013) Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: charge carrier scavengers mechanism. Appl Catal A 466:153–160

    Article  CAS  Google Scholar 

  • Selbach SM, Einarsrud M-A, Tybell T, Grande T (2007) Synthesis of BiFeO3 by wet chemical methods. J Am Ceram Soc 90:3430

    Article  CAS  Google Scholar 

  • Shaheen K, Suo H, Arshad T, Shah Z, Khan SA, Khan SB, Khan MN, Liu M, Ma L, Cui J, Ji YT, Wang Y (2020) Metal oxides nanomaterials for the photocatalytic mineralization of toxic water wastes under solar light illumination. J Water Process Eng 34:101138

    Google Scholar 

  • Shi J, Guo L (2012) ABO3-based photocatalysts for water splitting. Progress in Natural Sci: Mater Int 22:592–615

    Article  Google Scholar 

  • Silva J, Reyes A, Esparza H, Camacho H, Fuentes L (2011) BiFeO3: a review on synthesis, doping and crystal structure. Integr Ferroelectr 126:47

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  Google Scholar 

  • Sin J-C, Lam S-M, Mohamed AR, Lee K-T (2012) Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review. Int J Photoenergy 185159

    Google Scholar 

  • Srivastav SK, Gajbhiye NS (2012) Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles. J Am Ceram Soc 95:3678–3682

    Article  CAS  Google Scholar 

  • Srivastav SK, Gajbhiye NS, Banerjee A (2013) Structural transformation and enhancement in magnetic properties of single-phase Bi1−xPrxFeO3 nanoparticles. J. Appl. Phys. 113:203917

    Google Scholar 

  • Tabares-Munoz C, Rivera JP, Schmid H (1984) Ferroelectric domains, birefringence and absorption of single crystals of BiFeO3. Ferroelectrics 55:235

    Article  Google Scholar 

  • Tan H, Zhao Z, Zhu W-B, Coker EN, Li B, Zheng M, Yu W, Fan H, Sun Z (2014) Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl Mater Interfaces 6:19184–19190

    Article  CAS  Google Scholar 

  • Vanga PR, Mangalaraja RV, Ashok M (2015) Effect of (Nd, Ni) co-doped on the multiferroic and photocatalytic properties of BiFeO3. Mater Res Bull 72:299–305

    Article  CAS  Google Scholar 

  • Verma R, Samdarshi SK, Bojja S, Paul S, Choudhury B (2015) A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: Role of interface and oxygen vacancies. Sol Energy Mater Sol Cells 141:414–422

    Article  CAS  Google Scholar 

  • Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731

    Article  CAS  Google Scholar 

  • Wang X, Zhang YG, Wu Z (2010) Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol–gel strategy. Mater Lett 64:486–488

    Google Scholar 

  • Wang X, Mao W, Zhang J, Han Y, Quan C, Zhang Q, Yang T, Yang J, Li XA, Huang W (2015) Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J Colloid Interface Sci 448:7–23

    Google Scholar 

  • Wang W, Tadé MO, Shao Z (2015a) Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44:5371–5408

    Article  CAS  Google Scholar 

  • Wang X, Mao W, Zhang Q, Wang Q, Zhu Y, Zhang J, Yang T, Yang J, Li XA, Huang W (2016) PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO3 uniform nanostructures with enhanced photocatalytic activities. J Alloys Compounds 677:288–293

    Google Scholar 

  • Wang S, Chen D, Niu F, Zhang N, Qin L, Huang Y (2016b) Hydrogenation-induced surface oxygen vacancies in BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. J Alloy Compd 688:399–406

    Article  CAS  Google Scholar 

  • Wei J, Xue D (2008) Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol–gel process. Mater Res Bull 43:3368

    Article  CAS  Google Scholar 

  • Yang J, Li X, Zhou J, Tang Y, Zhang Y, Li Y (2011) Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis. J Alloy Compd 509:9271–9277

    Article  CAS  Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495

    Google Scholar 

  • Yin L, Mi W (2020) Progress in BiFeO3-based heterostructures: materials properties and applications. Nanoscale 12:477–523

    Article  CAS  Google Scholar 

  • Yongming H, Linfeng F, Yiling Z, Jikang Y, Yu W, Haoshuang G (2011) Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J Nanomater

    Google Scholar 

  • Yuning H, Yi J, Ya Z (2010) Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity. J Molecular Catalysis A: Chem 331

    Google Scholar 

  • Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1:136–148

    Google Scholar 

  • Zhang J, Gondal MA, Wei W, Zhang T, Xu Q, Shen K (2012) Preparation of room temperature ferromagnetic BiFeO3 and its application as an highly efficient magnetic separable adsorbent for removal of Rhodamine B from aqueous solution. J Alloy Compd 530:107–110

    Article  CAS  Google Scholar 

  • Zhang X, Wang B, Wang X, Xiao X, Dai Z, Wu W, Zheng J, Ren F, Jiang C (2015) Preparation of M@BiFeO3 nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity. J Am Ceram Soc 98:2255–2263

    Article  CAS  Google Scholar 

  • Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C 4:4092–4124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastav, S.K., Singh, S.P., Kumar, K. (2021). Perovskite BiFeO3 Nanostructure Photocatalysts for Degradation of Organic Pollutants. In: Singh, S.P., Rathinam, K., Gupta, T., Agarwal, A.K. (eds) Nanomaterials and Nanocomposites for Environmental Remediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-3256-3_7

Download citation

Publish with us

Policies and ethics